Цитата:
Вывод: если даже Вам нужна только одна гармоника, но Вы подозреваете, что другие гармонические составляющие в сигнале есть, то лучше заказать побольше, а потом оставить ту, у которой максимальная амплитуда, чем искать одну, а всё остальное считать шумом. К сожалению, это уже потребует применения метода Прони в полном объёме — см. книгу Марпла-младшего.
Да, в исходном сигнале конечно же может (и будет) большое количество кратных гармоник с меньшими амплитудами. Изначально пробовал Фурье, потом Герцеля, но наблюдалось растекание спектра:
Цитата:
искомая частота может не попасть на "зуб гребёнки частот"
Частота основной гармоники приблизительно известна (но она медленно плавает в небольших пределах).
Суть задумки в том, чтобы "быстро" (скажем на основании отcчетов за четверть периода) определять амплитуду основной гармоники, пересчитывая ее на каждом новом отсчете и определять разность между выделенной гармоникой и исходным сигналом. При этом "медленно" следить и за частотой, корректируя по ней выделение основной гармоники.
Читаю Марпла, но думаю будут еще вопросы.
Спасибо.