2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 Слабая формулировка уравнений мелкой воды
Сообщение16.04.2015, 13:59 
Добрый день,
есть следующая проблема: мне необходимо получить слабую формулировку уравнений мелкой воды для использования ее в пакете FreeFem++, однако я не могу разобраться, как производится приведение задачи к этой формулировке. Не могли бы вы помочь с этим вопросом?
$\frac{du}{dt}-fv + \frac{\partial(gh)}{\partial x} = 0$

 
 
 
 Re: Слабая формулировка уравнений мелкой воды
Сообщение16.04.2015, 15:25 
А что Вы называете слабой формулировкой уравнений мелкой воды?

 
 
 
 Re: Слабая формулировка уравнений мелкой воды
Сообщение16.04.2015, 16:01 
Честно говоря,я слабо разбираюсь в этом вопросе. В задании говорится о том, что дано указанное выше уравнение, которое надо решить в пакете FreeFem.
Насколько я знаю, для приведения используется формула Остроградского-Гаусса, но каким образом её правильно применить я не знаю, к сожалению.

 
 
 
 Re: Слабая формулировка уравнений мелкой воды
Сообщение16.04.2015, 21:41 
Аватара пользователя
VMMF в сообщении #1004455 писал(а):
В задании говорится о том, что дано указанное выше уравнение, которое надо решить в пакете FreeFem.
Если все, что есть -- лишь указанное уравнение, то это не задание.
Это что-то с чем-то.

 
 
 
 Re: Слабая формулировка уравнений мелкой воды
Сообщение17.04.2015, 16:37 
Аватара пользователя
Там не одно уравнение, а система. В неё входит ещё, например, уравнение
$\frac{dv}{dt} + f u + \frac{\partial(gh)}{\partial y}=0$
$u$ и $v$ — это $x$- и $y$-компоненты скорости.
Вы взяли из системы только одно уравнение, но в него входят несколько неизвестных функций. И найти все эти функции из одного уравнения, решив его отдельно от остальных, невозможно.

 
 
 
 Re: Слабая формулировка уравнений мелкой воды
Сообщение17.04.2015, 19:27 
Аватара пользователя
svv в сообщении #1004838 писал(а):
И найти все эти функции из одного уравнения, решив его отдельно от остальных, невозможно.
Ну от неча делать можно конечно взять для конкретно данного уравнения:
$$v= v(x,y), \qquad  g=\frac {\varphi(t,x)}{h}, \qquad f=0  \vee  u=0 $$
Ну это же не "решение"

 
 
 
 Re: Слабая формулировка уравнений мелкой воды
Сообщение17.04.2015, 19:48 
svv, ох, действительно, просмотрела, простите за такую грубую ошибку.

Тогда как-то так, еще раз извините за некорректную постановку:
$\frac{du}{dt}-fv + \frac{\partial(gh)}{\partial x} = 0$
$\frac{dv}{dt} + f u + \frac{\partial(gh)}{\partial y}=0$
$\frac{\partial h}{\partial t} + \frac{\partial(hu)}{\partial x} + \frac{\partial(hu)}{\partial y} =0$

 
 
 
 Re: Слабая формулировка уравнений мелкой воды
Сообщение17.04.2015, 20:31 
Аватара пользователя
Ну, хорошо. Говорят, $f$ — параметр Кориолиса. Попробуйте оценить физическую ситуацию в Вашей задаче реалистично: сила Кориолиса играет в ней существенную роль или нет? Если нет — выкинуть соответствующее слагаемое к чертям. У Ландау-Лифшица, например, этого слагаемого вообще нет. Сочли несущественным для большинства приложений.

 
 
 
 Re: Слабая формулировка уравнений мелкой воды
Сообщение17.04.2015, 20:39 
Oleg Zubelevich, спасибо, почитаю этот том.
svv, говорят, ее можно аппроксимировать константой.

 
 
 
 Re: Слабая формулировка уравнений мелкой воды
Сообщение17.04.2015, 21:34 
(на ЛЛ-6 сослались выше, поэтому я свое первое сообщение стер) единственное, в чем могут быть проблемы это с происхождением уравнения
$$h_t+\frac{\partial (v^1 h)}{\partial x^1}+\frac{\partial (v^2 h)}{\partial x^2}=0$$ В предположении несжимаемости жидкости ($\mathrm{div} \overline v=0$) это уравнение равносильно уравнению $h_t+\frac{\partial h}{\partial x^1}v^1+\frac{\partial h}{\partial x^2}v^2=0$. Последнее уравнение означает, что вертикальная компонента скорости жидкости на ее поверхности равна нулю

 
 
 
 Re: Слабая формулировка уравнений мелкой воды
Сообщение19.04.2015, 22:01 
И все-таки я не пойму, как правильно получить слабую формулировку (ЛЛ читала)

 
 
 
 Re: Слабая формулировка уравнений мелкой воды
Сообщение20.04.2015, 15:05 
Аватара пользователя
Что удалось выяснить из Интернета. (Вы-то всё это, наверное, и так знали.)

FreeFem++ — это пакет программ и язык программирования для решения задач математической физики методом конечных элементов.
Метод конечных элементов = МКЭ = Finite element method = FEM (отсюда и название пакета).
Для применения МКЭ задачу надо привести к так называемой слабой (или вариационной) формулировке.
Понятие слабой формулировки описано здесь (в общем виде, правда, с двумя примерами).

Нашлись две работы (статья и пособие), в которых есть примеры приведения задачи к слабой формулировке.
1) Л.В.Сахарова. Двумерное математическое моделирование изоэлектрического фокусирования средствами интегрированной среды разработки FreeFem++.
2) М.Ю.Жуков, Е.В.Ширяева. Пакет конечных элементов FreeFem++.
Ссылки не привожу, pdf-файлы моментально находятся в Google.
К сожалению, в обеих работах показано только, что на входе и что на выходе, без объяснения методики. Возможно, сама методика описана в книгах по МКЭ, но я таких ещё не нашёл.
В ЛЛ этого, понятно, не будет: они, скорее, получают уравнения и изучают их общие свойства, чем изучают методы их численного решения.

О чем всё-таки можно догадаться.
Сначала надо уравнение домножить на так называемую тестовую функцию.
Затем проинтегрировать по области.
Потом, пользуясь интегральными теоремами (не обязательно Гаусса-Остроградского) надо перебросить (как при интегрировании по частям) производную с неизвестной функции на тестовую, в тех слагаемых, где это возможно.

 
 
 
 Re: Слабая формулировка уравнений мелкой воды
Сообщение21.04.2015, 12:16 
svv
Спасибо, вторую книгу штудировала.
Книги по мкэ пробовала искать, но пока безрезультатно.

 
 
 
 Re: Слабая формулировка уравнений мелкой воды
Сообщение21.04.2015, 15:53 
Аватара пользователя
Знаете ли Вы, что такое $\frac{du}{dt}$ и $\frac{dv}{dt}$ ?
Координаты обозначим $x_1$ и $x_2$, компоненты вектора скорости $\mathbf u$ обозначим $u_1$ и $u_2$.
$\frac{d\mathbf u}{dt}=\frac{\partial \mathbf u}{\partial t}+(\mathbf u\cdot \nabla)\mathbf u=\frac{\partial \mathbf u}{\partial t}+u_1\frac{\partial \mathbf u}{\partial x_1}+u_2\frac{\partial \mathbf u}{\partial x_2}$
$\frac{du_1}{dt}=\frac{\partial u_1}{\partial t}+u_1\frac{\partial u_1}{\partial x_1}+u_2\frac{\partial u_1}{\partial x_2}$
$\frac{du_2}{dt}=\frac{\partial u_2}{\partial t}+u_1\frac{\partial u_2}{\partial x_1}+u_2\frac{\partial u_2}{\partial x_2}$

 
 
 
 Re: Слабая формулировка уравнений мелкой воды
Сообщение21.04.2015, 19:05 
Аватара пользователя
svv в сообщении #1005867 писал(а):
Для применения МКЭ задачу надо привести к так называемой слабой (или вариационной) формулировке.
Понятие слабой формулировки описано здесь (в общем виде, правда, с двумя примерами).

Не расскажете ли, это вариационная формулировка в том же смысле, что принцип наименьшего действия в физике, или нечто совсем другое? (Если первое, то мне стоит почитать...)

 
 
 [ Сообщений: 32 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group