2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3
 
 Re: Отношение принадлежности
Сообщение05.04.2015, 02:13 
Аватара пользователя
Kras в сообщении #1000289 писал(а):
Пустое отношение тоже является подмножеством произведения $Z \times Z=\bigl\{\langle\varnothing,\varnothing\rangle,\langle\varnothing,\{\varnothing\}\rangle,\langle\{\varnothing\},\varnothing\rangle,\langle\{\varnothing\},\{\varnothing\}\rangle\bigr\}$.
Нет, отчего же пустое? Это не то, что загадывал AGu.
(что Вы обозначаете угловыми скобками?)

$Z\times Z$ состоит из упорядоченных пар
$(\varnothing,\varnothing)$
$(\varnothing,\{\varnothing\})$
$(\{\varnothing\},\varnothing)$
$(\{\varnothing\},\{\varnothing\})$
В каждой паре и первый, и второй элемент принадлежат $Z$. Вам остается найти пару (пары), в которой первый элемент принадлежит второму.

 
 
 
 Re: Отношение принадлежности
Сообщение05.04.2015, 07:00 

(Спасибо!)

svv, спасибо! Вы не представляете, как я рад этому Вашему сообщению. Оно тут чуть ли не единственное «вменяемое» (ну кроме модераторских, разумеется :-)) и уж точно единственное по делу. Тему фактически превратили в помойку. Надеюсь, теперь эти бунтари угомонятся.


Kras, Вы очень близки к правильному ответу. Прислушайтесь к совету svv, и у Вас все получится. (Более того, правильный ответ уже промелькнул в одном из Ваших сообщений. Вы просто не были в нем уверены.)

Мне показалось, что Вы как-то неправильно понимаете обозначение для множества объектов, обладающих указанным свойством. Запись $\{\text{объект}:\text{условие}\}$ обозначает совокупность всех объектов, удовлетворяющих данному условию. Такая совокупность единственна. Поэтому Ваши фразы типа «тоже годится» по этому поводу говорят о каком-то недопонимании.

 
 
 
 Re: Отношение принадлежности
Сообщение05.04.2015, 07:17 
Не промелькнул, а
Kras в сообщении #1000227 писал(а):
$\bigl\{\langle\varnothing,\{\varnothing\}\rangle\bigr\}$ вполне сгодится

Но почему не сгодится пустое отношение?
Я понял.

 
 
 
 Re: Отношение принадлежности
Сообщение05.04.2015, 07:23 
Kras в сообщении #1000332 писал(а):
Но почему не сгодится пустое отношение?
Потому что слово «сгодится» тут вообще неуместно. Я уже сказал, такое множество единственно. Поэтому на его роль не могут «сгодиться» разные претенденты. Еще раз, речь идет о множестве ВСЕХ объектов, удовлетворяющих указанному условию. Такое множество только одно.

Ну а ответ — правильный. (И других правильных ответов здесь нет и быть не может.) Поздравляю.

 
 
 
 Re: Отношение принадлежности
Сообщение05.04.2015, 11:10 
Аватара пользователя
AGu в сообщении #1000330 писал(а):
Надеюсь, теперь эти бунтари угомонятся.
А ну-ка, кто тут против нас с AGu? Выходи, биться будем!

AGu в сообщении #1000195 писал(а):
Ну а если как-то разумно ограничить область значений $x$ и $y$, то принадлежность будет отношением. Например, $\{(x,y):x,y\in Z,\ x\in y\}$ — отношение на множестве $Z$, т.е. бинарное отношение между элементами множества $Z$.
Скажите, пожалуйста, почему Вы не написали что-нибудь такое, более спокойное?:
$\{(x,Y):x\in Z,\;Y\subset Z,\ x\in Y\}$
Задавая, например, $n$ элементов $Z$, мы тем самым задаем и $2^n$ его подмножеств $Y$. Но сами $Y$ элементами $Z$ не являются.

 
 
 
 Re: Отношение принадлежности
Сообщение05.04.2015, 11:22 
svv в сообщении #1000394 писал(а):
Скажите, пожалуйста, почему Вы не написали что-нибудь такое, более спокойное?:
$\{(x,y):x\in Z,y\subset Z,\ x\in y\}$
Согласен, это более «жизненный» пример. Я просто не хотел преждевременно отвлекаться на такие уводящие в сторону вопросы, как считается ли отношением подмножество $Z_1\times Z_2$ (где, например, $Z_1=Z$ и $Z_2=\mathcal P(Z)$) или надо чтобы оно непремено было подмножеством квадрата $Z\times Z$ (ведь кто-то различает отношения и соответствия, а кто-то нет), что такое вообще $\mathcal P(Z)$, почему оно существует и т.д. и т.п. А так — да, конечно, мой пример сильно абстрактный.

 
 
 
 Re: Отношение принадлежности
Сообщение05.04.2015, 11:26 
Аватара пользователя
Спасибо.
(Я очень люблю быстро написать сообщение и потом много-много раз его редактировать.)

 
 
 
 Re: Отношение принадлежности
Сообщение05.04.2015, 11:38 
Давайте я включу наивного, отвечу непрофессионально, и м.б. Kras все поймет. Можете меня поругать за непрофессионализм, я заранее соглашусь с этим. Поскольку у меня ощущение, что он просто не в курсе. Ну а если я ошибаюсь, ну и ладно.

Kras, если слово "принадлежит" понимать интуитивно, то $\in$ - это бинарное отношение. Например, на множестве людей можно ввести бинарное отношение $P(a,b):$ $a$ - отец $b$, здесь $a,b$ - люди. Или на множестве человеческих изделий можно ввести бинарное отношение "$a$ - деталь $b$", здесь $a,b$ - человеческие изделия. В соотношении $x\in X$ $x$ - это произвольный элемент, а $X$ - это произвольное множество.
Вроде бы все просто и понятно.
Но в математике все должно быть формализовано. И когда мы задаем вопрос "что такое отношение?", желая его выразить в терминологии теории множеств, то имеется определение: бинарное отношение на множествах $A;B$ - это произвольное подмножество $A\times B$. Тогда наше отношение "быть отцом" определяется на множестве людей в декартовом квадрате, а отношение "быть деталью", определяется на множестве человеческих изделий в декартовом квадрате, отношение принадлежности определяется на произведении $\text{множество всех элементов}\times\text{множество всех множеств}$. Причем в качестве формализации $\text{множество всех элементов}$ в теории множеств предлагается тоже $\text{множество всех множеств}$. Т.е. например есть множество $M=\{1;2;3\}$. Вот тогда $1\in M,2\in M,3\in M$, все остальные $x\not\in M$. Значит отношение $\in$ содержит подмножество $\{(1;\{1;2;3\}),(2;\{1;2;3\}),(3;\{1;2;3\})\}$, а еще оно содержит много чего другого. Здесь причем $1;2;3$ - это тоже некие множества, их можно выписать явно, но это не принципиально.
Вроде бы все просто и понятно.
И про это говорил ewert, что если Вам надо ехать, то этого достаточно, много математиков так и работает и получает вполне осмысленные результаты.
А если Вам "нужны шашечки", логическая строгость и непротиворечивость, то идем дальше.
Но на самом деле мы все прекрасно знаем, что наивная теория множество содержит общеизвестный парадокс Рассела. И $ \text{множество всех множеств}$ просто не существует. И проблема здесь не в отношении принадлежности, а в теории множеств, это стандартная проблема, которую все знают и которую здесь все отвечающие сразу имеют ввиду.
Дальше идут стандартные варианты или костыли, решающие эту проблему:
1) Ограничить универсум ($Z$ в сообщении AGu, но тогда Вы можете спросить, а почему именно этот универсум - ну тут хоть какой-нибудь)
2) Использовать аксиоматические теории: ZF, ZFC, NBG, что-то еще. Но там нет понятия отношения, там просто аксиомы. Зато там нет противоречий (что устанавливается интуитивно, доказать это мы не сможем).

Вот все, можете ругать :-)

 
 
 
 Re: Отношение принадлежности
Сообщение05.04.2015, 11:50 
Аватара пользователя
У меня вот какой вопрос возник: О чём вся эта тема? Т.е. с какого перепуга вместо двух букв "да" в ответе она уже породила трёхстраничную дискуссию про отличия классов от множеств, парадоксы Рассела и прочую не относящуюся к делу (имхо) дребедень? Давайте тогда ещё обсудим вопрос в терминах иерархии типов.

 
 
 
 Re: Отношение принадлежности
Сообщение05.04.2015, 11:54 
epros в сообщении #1000410 писал(а):
"да"
о, правда? а почему? есть доказательство?
собс-но, ответ "да" никому не интересен, интересны рассуждения

 
 
 
 Re: Отношение принадлежности
Сообщение05.04.2015, 12:00 
Sonic86, спасибо. Я Вас не буду ругать, Вы все хорошо рассказали.
epros, Вы слишком умны для этой темы.
:-)

 
 
 [ Сообщений: 41 ]  На страницу Пред.  1, 2, 3


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group