2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 Отношение принадлежности
Сообщение04.04.2015, 22:34 
На заборе пишут, что принадлежность элемента $x$ к множеству $X$ - это бинарное отношение. Так ли это? И если так, то какие элементы оно связывает?

 
 
 
 Re: Отношение принадлежности
Сообщение04.04.2015, 22:55 
Смотря что считать принадлежностью и что считать отношением. Если под принадлежностью понимать нечто туманное на манер $\{(x,y):x\in y\}$, а под отношением понимать множество, состоящее из пар, то принадлежность не является отношением, так как то «туманное» множеством не является. Точнее говоря, не существует множества, состоящего из всех пар $(x,y)$ таких, что $x\in y$. В этом смысле принадлежность вообще не существует, не является объектом теории множеств. (Его можно, разве что, назвать, отношением-классом или класс-отношением, но едва ли об этом сейчас стоит говорить.) Ну а если как-то разумно ограничить область значений $x$ и $y$, то принадлежность будет отношением. Например, $\{(x,y):x,y\in Z,\ x\in y\}$ — отношение на множестве $Z$, т.е. бинарное отношение между элементами множества $Z$.

 
 
 
 Re: Отношение принадлежности
Сообщение04.04.2015, 23:09 
Т.е. объяснить что такое $x \in X$ можно только с помощью аксиом?
AGu в сообщении #1000195 писал(а):
Например, $\{(x,y):x,y\in Z,\ x\in y\}$ — отношение на множестве $Z$, т.е. бинарное отношение между элементами множества $Z$.

Не понял примера. Что конкретно тут можно взять в качестве $x$, $y$ и $Z$?

 
 
 
 Re: Отношение принадлежности
Сообщение04.04.2015, 23:23 
AGu в сообщении #1000195 писал(а):
Например, $\{(x,y):x,y\in Z,\ x\in y\}$

Вообще-то говорить о множествах, элементы которого суть (пусть иногда) элементы друг друга -- как минимум некультурно и, наверное, % в 99.9 ещё и практически бесполезно. Да и вопрос был явно не об этом.

Kras в сообщении #1000179 писал(а):
принадлежность элемента $x$ к множеству $X$ - это бинарное отношение. Так ли это?

Для нормальных людей -- нет. Не для этого придумано понятие отношения. Ну а извратить обобщить на забор это понятие можно как угодно.

 
 
 
 Re: Отношение принадлежности
Сообщение04.04.2015, 23:33 
ewert

Просто в интернете много бредоресурсов, которые сбивают с толку.

 
 
 
 Re: Отношение принадлежности
Сообщение04.04.2015, 23:36 
Kras в сообщении #1000199 писал(а):
Т.е. объяснить что такое $x \in X$ можно только с помощью аксиом?
Смотря кому объяснить. :-) Если студенту, то — да, только с помощью аксиом, в рамках теории множеств. Ну а если школьнику — тут все способы хороши. Можно поиграть в буратины и яблоки в их карманах, не знаю. :-) Заданный Вами вопрос относится к теории множеств, потому я и отвечаю на него в рамках теории множеств. На университетском уровне любой другой ответ был бы непрофессиональным.

Kras в сообщении #1000199 писал(а):
AGu в сообщении #1000195 писал(а):
Например, $\{(x,y):x,y\in Z,\ x\in y\}$ — отношение на множестве $Z$, т.е. бинарное отношение между элементами множества $Z$.
Не понял примера. Что конкретно тут можно взять в качестве $x$, $y$ и $Z$?
Вопрос нехороший. Он нехороший потому, что та конструкция не зависит от $x$ и $y$, она зависит только от $Z$. Поэтому хороший вопрос был бы такой: что конкретно можно взять в качестве $Z$? Ответ — любое множество. (От слова «вообще».) Пофантазируйте сами. Возьмите, например, $Z=\bigl\{\varnothing,\{\varnothing\}\bigr\}$ и попробуйте понять, из каких пар будет состоять отношение принадлежности между его элементами.

Можете также послушать и ewert'а, известного своими методическими вывертами. Он Вам наверняка все очень доходчиво расскажет, пока я буду спать. До завтра...

 
 
 
 Re: Отношение принадлежности
Сообщение04.04.2015, 23:40 
Аватара пользователя
ewert в сообщении #1000205 писал(а):
Kras в сообщении #1000179 писал(а):
принадлежность элемента $x$ к множеству $X$ - это бинарное отношение. Так ли это?

Для нормальных людей -- нет. Не для этого придумано понятие отношения.
Не понял. А я вот слышал, что в смысле теорий, формализованых в логике первого порядка, бинарным отношением именуется двуместный предикатный символ (ну и не только). В данном случае таковым символом является $\in$. Так что слова "принадлежность -- это бинарное отношение" приобретают вроде как определённый смысл.

 
 
 
 Re: Отношение принадлежности
Сообщение04.04.2015, 23:46 
epros в сообщении #1000212 писал(а):
в смысле теорий, формализованых в логике первого порядка, бинарным отношением именуется двуместный предикатный символ.

В смысле чего угодно можно формально определить что угодно. Однако вне матлогики, т.е. просто в математике, под отношением понимается нечто гораздо более жёстко определённое -- именно отношение между элементами, иерархическая вложенность которых друг в друга ни разу не предполагается.

-- Вс апр 05, 2015 00:53:06 --

Так, конкретнее. Был задан вопрос:

Kras в сообщении #1000179 писал(а):
принадлежность элемента $x$ к множеству $X$ - это бинарное отношение

Так вот для матлогика -- почему бы и нет, в качестве экзерсиса. А для просто математика -- нелепо. Ибо у него своё формальное определение отношения, причём необходимое не для окончательной и бесповоротной завёртки бантиков, а просто для работы.

 
 
 
 Re: Отношение принадлежности
Сообщение04.04.2015, 23:58 
Аватара пользователя
ewert в сообщении #1000215 писал(а):
под отношением понимается нечто гораздо более жёстко определённое -- именно отношение между элементами, иерархическая вложенность которых друг в друга ни разу не предполагается.
Вот я и не понимаю таких определений с логическим кругом внутри. Что значит "отношение -- это отношение"? Скажем, слова "отношение -- это объект, определяемый формулой с двумя свободными переменными" -- я понимаю, а это -- нет.

 
 
 
 Re: Отношение принадлежности
Сообщение05.04.2015, 00:04 
epros в сообщении #1000219 писал(а):
Скажем, слова "отношение -- это объект, определяемый формулой с двумя свободными переменными" -- я понимаю, а это -- нет.

Это просто потому, что вам (sic) нужно шашечки, а нам нужно ехать. Для вас это свободная игра предикатов, а для нас -- всего лишь подмножество декартова произведения. Ровно что для работы и нужно.

 
 
 
 Re: Отношение принадлежности
Сообщение05.04.2015, 00:07 
AGu в сообщении #1000208 писал(а):
Ответ — любое множество.

Если взять множество натуральных чисел, то таких пар не существует (ни один элемент не принадлежит элементу). В результате получается пустое подмножество декартова квадрата.
AGu в сообщении #1000208 писал(а):
$Z=\bigl\{\varnothing,\{\varnothing\}\bigr\}$

В этой ситуации $Z \times Z=\bigl\{\langle\varnothing,\varnothing\rangle,\langle\varnothing,\{\varnothing\}\rangle,\langle\{\varnothing\},\varnothing\rangle,\langle\{\varnothing\},\{\varnothing\}\rangle\bigr\}$. Здесь пустое отношение тоже будет подмножеством, но будет ли оно удовлетворять всем условиям? Кажется я снова запутался.

Но $\bigl\{\langle\varnothing,\{\varnothing\}\rangle\bigr\}$ вполне сгодится.

 
 
 
 Re: Отношение принадлежности
Сообщение05.04.2015, 00:13 
Аватара пользователя
На заборах много чего пишут. Удивляюсь, что уважаемые люди бросились отвечать какому-то гопнику на идиотский, в сущности, вопрос, не удосужившись даже уточнить, на каком именно заборе он это прочёл. Kras, ответьте, пожалуйста, на каком заборе в каком источнике пишут, что принадлежность элемента множеству является бинарным отношением?

-- 05.04.2015, 00:16 --

Kras в сообщении #1000227 писал(а):
В этой ситуации $Z \times Z=\bigl\{<\varnothing,\varnothing>,<\varnothing,\{\varnothing\}>,<\{\varnothing\},\varnothing>,<\{\varnothing\},\{\varnothing\}>\bigr\}$. Здесь пустое отношение тоже будет подмножеством, но будет ли оно удовлетворять всем условиям? Кажется я снова запутался.
Дайте мне это развидеть! Что значат все эти угловые скобки (которые на самом деле даже не скобки, а знаки «больше-меньше»)?

 
 
 
 Re: Отношение принадлежности
Сообщение05.04.2015, 00:21 

(Oh mein Gott.)

Kras в сообщении #1000227 писал(а):
$Z \times Z=\bigl\{<\varnothing,\varnothing>,<\varnothing,\{\varnothing\}>,<\{\varnothing\},\varnothing>,<\{\varnothing\},\{\varnothing\}>\bigr\}$
I CAN HAZ LANGLE RANGLE? SRSLY. Почему многих уже, по идее, должных смекнуть, что тех — вещь всё-таки богатая, так тянет угловые скобки обозначать знаками больше-меньше, а не поискать правильный способ немножко дольше? \langle\varnothing,\varnothing\rangle $\langle\varnothing,\varnothing\rangle$. Ну и вообще в теории множеств особых поводов для использования угловых вместо обычных круглых как будто бы нет.

 
 
 
 Re: Отношение принадлежности
Сообщение05.04.2015, 00:21 

(Оффтоп)

О-о, не обратил внимания.

AGu в сообщении #1000208 писал(а):
Заданный Вами вопрос относится к теории множеств,

ОтнюдЬ. Понятие бинарного отношения -- отнюдь не теоретико-множественное. (хотя, конечно, никто не в силах и им запретить это словосочетание использовать)

AGu в сообщении #1000208 писал(а):
Ответ — любое множество. (От слова «вообще».) Пофантазируйте сами. Возьмите, например, $Z=\bigl\{\varnothing,\{\varnothing\}\bigr\}$ и попробуйте понять, из каких пар будет состоять отношение принадлежности между его элементами.

Это ещё смешнее. Вы уверены, что предложенное Вами множество -- именно любое?... что, например, $Z=\bigl\{1,\,2\bigr\}$ -- принадлежит к этому же классу?...

 
 
 
 Re: Отношение принадлежности
Сообщение05.04.2015, 00:22 
Aritaborian в сообщении #1000232 писал(а):
На заборах много чего пишут. Удивляюсь, что уважаемые люди бросились отвечать какому-то гопнику на идиотский, в сущности, вопрос, не удосужившись даже уточнить, на каком именно заборе он это прочёл. Kras, ответьте, пожалуйста, на каком заборе в каком источнике пишут, что принадлежность элемента множеству является бинарным отношением?

Идиотский вопрос задал я, поэтому под гопником вы понимаете конкретно меня. На заборе в источнике никаких вопросов не было. Там просто пишут, что принадлежность элемента множеству является бинарным отношением, это да, это прямо так и написано. Но меня такое утверждение сильно удивило и запутало, поэтому я и решил обратиться на форум.

 
 
 [ Сообщений: 41 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group