2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Линейная гауссовская модель, задача с измерением углов.
Сообщение14.11.2014, 18:34 
В четырехугольнике $ABCD$ было произведено 8 независимых измерений углов $ABD, DBC, ABC, BCD, CDB, BDA, CDA, DAB$. Считая, что ошибки измерений распределены по $N(0, \sigma^2)$ найти оптимальные оценки углов $ABD, DBC, CDB, BDA$ и неизвестный параметр $\sigma^2$.

Как я понял - решаем через линейную гауссовскую модель. Пишем $X$ = $\varepsilon$ + $l$, где $\varepsilon$ распределен по $N(0, I_n \cdo \sigma^2)$, а $l$ - вектор размерности n.
Я так понял - наши случайные вектора - 4х мерные. Первое измерение - ($ABD, ABC, CDB, CDA$) второе - ($DBC, BCD, BDA, DAB$). Первое что мне надо - перевести эти измерения в вид независимых измерений требуемых углов. Как это сделать? Ведь у нас получаются в первом измерении зависимые углы.

 
 
 
 Re: Линейная гауссовская модель, задача с измерением углов.
Сообщение14.11.2014, 19:24 
Аватара пользователя
Нормальное распределение - наименьшие квадраты. Минимизируем сумму квадратов отклонений измеренных углов от оцениваемых при условии равенства суммы углов четырёхугольника 360 градусам.

 
 
 
 Re: Линейная гауссовская модель, задача с измерением углов.
Сообщение14.11.2014, 19:36 
А как оценить эти углы независимо, если у нас в распределении они выражаются через некоторые измерения?

 
 
 
 Posted automatically
Сообщение14.11.2014, 19:49 
Аватара пользователя
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
Причина переноса: формулы не оформлены $\TeX$ом

q271828
Наберите все формулы и термы $\TeX$ом.
Инструкции по оформлению формул здесь или здесь (или в этом видеоролике).
См. также тему Что такое карантин, и что нужно делать, чтобы там оказаться.
После исправлений сообщите в теме Сообщение в карантине исправлено, и тогда тема будет возвращена.

 
 
 
 Posted automatically
Сообщение14.11.2014, 20:32 
Аватара пользователя
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»

 
 
 
 Re: Линейная гауссовская модель, задача с измерением углов.
Сообщение14.11.2014, 21:51 
Аватара пользователя
Измерения - независимы. Оценки будут зависимы.

 
 
 
 Re: Линейная гауссовская модель, задача с измерением углов.
Сообщение15.11.2014, 10:50 
Измерения то независимы, но вот, скажем, оценки для одного и того же угла $ABD$ в первом моем измерении сразу дается, а во втором - выражается через 2 других. Что делать в этом случае?

-- 15.11.2014, 11:18 --

Хорошо, можно ли представить эти 2 измерения как
$(ABD, ABC-ABD, CDB, CDA-CDB)$ и $ (\pi-BDA-DAB, DBC, \pi-BCD-DBC , BDA)$
И можно ли тут сразу применять метод наименьших квадратов?

 
 
 
 Re: Линейная гауссовская модель, задача с измерением углов.
Сообщение20.11.2014, 20:16 
Аватара пользователя
Нет. Так нельзя. Они перестанут быть независимыми.
Надо минимизировать сумму квадратов при ограничении. Можно Лагранжем, а можно воспользоваться тем, что ограничение очень простое, выразить один из неизвестных параметров через прочие, и минимизировать просто сумму квадратов отклонений.

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group