2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу 1, 2  След.
 
 Доказательство теоремы Ферма
Сообщение12.09.2014, 15:56 


12/09/14
25
ВОРОНОВ Георгий Борисович

Вариант доказательства теоремы Ферма

Уравнение $x^n+y^n=z^n$ не может быть решено при целых числах $n>2$.
Представим $$y^n=(x+a)^n;$$
$$z^n=(x+b)^n,$$
где $a<b, x, y, z$ - положительные числа.
После подстановки получим:
$$x^n+(x+a)^n-(x+b)^n=0$$
Используя бином Ньютона и группируя члены с одинаковыми коэффициентами, получим
$$x^n+nx^{n-1}(a-b)+ \cdots +\frac{n(n-1) \cdots (n-m+1)}{m!}\ \\
x^{n-m}(a^m-b^m)+ \cdots +nx(a^{n-1}-b^{n-1})+a^n-b^n=0 (1)$$

Из условия теоремы Ферма "при $n>2$ " можно сделать вывод, что при $n=2$ легко получить $$3^2+4^2-5^2=0$$
откуда имеем $x=3; a=1; b=2$. Полученные результаты подставим в уравнение $(1)$, получим
$$x^2+2x(a-b)+a^2-b^2=0$$

Но это решение не является условием теоремы Ферма.

Второго решения уравнения $(1)$ не существует.

Для доказательства того, что второго решения уравнения $(1)$ не существует представим уравнение $(1)$ для $n=3$, получим
$$x^3+3x^2(a-b)+3x(a^2-b^2)+a^3-b^3=0 (2)$$
Найдем сумму левой части этого выражения различными числами $x, a, b$:
$x=0,1; a=0,1; b=0,11$ сумма равна -0,00261
$x=1; a=1; b=2$ сумма равна -18
$x=2; a=1; b=2$ сумма равна -29
$x=3; a=1; b=2$ сумма равна -34
$x=2; a=2; b=4$ сумма равна -144
$x=3; a=3; b=5$ сумма равна -269

Уравнение $(1)$ для $n=2$, как указывалось выше, имеет вид
$$x^2+2x(a-b)+a^2-b^2=0 (3)$$

Найдем сумму левой части этого выражения с различными числами $x, a, b$:

$x=0,1; a=0,1; b=0,11$ сумма равна 0,058
$x=3; a=1; b=2$ сумма равна 0
$x=3; a=3; b=5$ сумма равна -19

Суммы расположим в две области: положительную или отрицательную в зависимости от знака суммы.

Выражение $(2)$ имеет суммы, которые попадают в отрицательную область, при этом количество наборов $x, a, b$ достаточно, чтобы проследить динамику изменений сумм.

Выражение $(3)$ имеет суммы, которые попадают в обе области, кроме суммы с
$x=3; a=1; b=2$, равной нулю, что является решением этого выражения.

Таким образом, выражение $(2)$ не может рассматриваться как уравнение. И следовательно не имеет решения.

Что подтверждает метод, использованный при доказательстве теоремы Ферма.

 Профиль  
                  
 
 Posted automatically
Сообщение12.09.2014, 16:36 


20/03/14
12041
 i  Тема перемещена из форума «Великая теорема Ферма» в форум «Карантин»
Тема перемещена в Карантин по следующим причинам:

Приведите оформление темы в соответствие с Правилами. В частности, весь текст доказательства должен быть набран здесь в $\TeX$.
Краткие инструкции можно найти здесь: topic8355.html и topic183.html.
Кроме этого, в теме Видео-пособия для начинающих форумчан можно посмотреть видео-ролик "Как записывать формулы".

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 Профиль  
                  
 
 Posted automatically
Сообщение03.12.2014, 18:51 
Супермодератор
Аватара пользователя


20/11/12
5728
 i  Тема перемещена из форума «Карантин» в форум «Великая теорема Ферма»
возвращено

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма
Сообщение03.12.2014, 19:27 
Заслуженный участник


20/12/10
8858
Georgij в сообщении #906980 писал(а):
Выражение $(2)$ имеет суммы, которые попадают в отрицательную область, при этом количество наборов $x, a, b$ достаточно, чтобы проследить динамику изменений сумм.
Почему Вы считаете, что достаточно? Вот, к примеру, взял я набор $x=6$, $a=1$, $b=2$ и получил положительную сумму.

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма
Сообщение03.12.2014, 20:11 


10/08/11
671
Georgij в сообщении #906980 писал(а):
Найдем сумму левой части этого выражения различными числами $x, a, b$:

Уважаемый Georgij! А зачем вводить дополнительные переменные $a, b$. За счет этого количество переменных не уменьшается. А перебор можно проводить прямо в УФ. Результаты любые. Например: $216+512-729=-1; 216+125-343=-2$ и т.д.

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма
Сообщение04.12.2014, 21:06 


10/08/11
671
lasta в сообщении #939789 писал(а):
Например: $216+512-729=-1; 216+125-343=-2$ и т.д.

Еще одна интересная сумма $10^3+9^3-12^3=1$. Сколько же нужно сделать переборов, чтобы доказать, что подобных минимумов больше не будет? И как это вписывается в то, что если числа правой части возрастают в ограниченном интервале, то нулевого решения точно не будет?

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма
Сообщение10.12.2014, 17:43 


12/09/14
25
Прошу прощения, но в тексте доказательства теоремы допущены две опечатки в цифрах:
1) "сумма равна -0,00261" должно быть: "сумма равна -0,000261";
2) "сумма равна 0,058" должно быть: "сумма равна 0,0059"

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма
Сообщение10.12.2014, 20:56 


10/08/11
671
Georgij в сообщении #943728 писал(а):
в тексте доказательства теоремы допущены две опечатки

Уважаемый Georgij! Опечатки Вы исправили. А что Вы ответите заслуженному участнику nnosipov?

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма
Сообщение17.12.2014, 13:38 


12/09/14
25
nnosipov в сообщении #939752 писал(а):
Georgij в сообщении #906980 писал(а):
Выражение $(2)$ имеет суммы, которые попадают в отрицательную область, при этом количество наборов $x, a, b$ достаточно, чтобы проследить динамику изменений сумм.
Почему Вы считаете, что достаточно? Вот, к примеру, взял я набор $x=6$, $a=1$, $b=2$ и получил положительную сумму.

Как показали расчеты выражения (2) с набором $n=3, a=1, b=2, x>4$; суммы попадают в положительную область, а при $x>6$ прослеживается устойчивая динамика увеличения сумм. Таким образом, выражение (2) не стремится к нулю, следовательно не имеет решения.

-- 17.12.2014, 13:55 --

lasta в сообщении #939789 писал(а):
Georgij в сообщении #906980 писал(а):
Найдем сумму левой части этого выражения различными числами $x, a, b$:

А зачем вводить дополнительные переменные $a, b$. За счет этого количество переменных не уменьшается. А перебор можно проводить прямо в УФ. Результаты любые. Например: $216+512-729=-1; 216+125-343=-2$ и т.д.


На ваше сообщение от 03.12.2014, 20:11
Переменные $a, b$ являются вспомогательными членами, которые используются для доказательства теоремы Ферма, при этом число переменных остается прежним. Представленные вами многочлены имеют конечные суммы: -1; -2, поэтому они не являются уравнениями.

-- 17.12.2014, 14:19 --

На ваше сообщение от 04.12.2014, 21:06
Вы пишете:
lasta в сообщении #940359 писал(а):
Еще одна интересная сумма $10^3+9^3-12^3=1$. Сколько же нужно сделать переборов, чтобы доказать, что подобных минимумов больше не будет? И как это вписывается в то, что если числа правой части возрастают в ограниченном интервале, то нулевого решения точно не будет?


Рассматривать предложенное вами выражение не имеет смысла, так как оно, кроме $n=3$, отличается от теоремы Ферма, которая имеет вид
$$x^n+y^n-z^n=0$$ при целых числах $n>2$.

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма
Сообщение17.12.2014, 15:03 


12/09/14
25
Georgij в сообщении #943728 писал(а):
Прошу прощения, но в тексте доказательства теоремы допущены две опечатки в цифрах:
1) "сумма равна -0,00261" должно быть: "сумма равна -0,000261";
2) "сумма равна 0,058" должно быть: "сумма равна 0,0059"


Но в тексте доказательства теоремы опечатки не исправлены! Как это исправить?

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма
Сообщение17.12.2014, 16:21 
Заслуженный участник


20/12/10
8858
Georgij в сообщении #948241 писал(а):
Как показали расчеты выражения (2) с набором $n=3, a=1, b=2, x>4$; суммы попадают в положительную область, а при $x>6$ прослеживается устойчивая динамика увеличения сумм. Таким образом, выражение (2) не стремится к нулю, следовательно не имеет решения.
Ну хорошо, с парой значений $a=1$, $b=2$ Вы разобрались. А как быть с другими возможными парами значений $a$ и $b$? Ведь нужно рассмотреть все гипотетически возможные пары значений $a$ и $b$.

-- Ср дек 17, 2014 20:25:30 --

Georgij в сообщении #948270 писал(а):
Но в тексте доказательства теоремы опечатки не исправлены! Как это исправить?
Не отвлекайтесь на несущественные мелочи, ответьте на мой вопрос.

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма
Сообщение17.12.2014, 20:28 
Супермодератор
Аватара пользователя


20/11/12
5728
Georgij в сообщении #948270 писал(а):
Но в тексте доказательства теоремы опечатки не исправлены! Как это исправить?
Никак. Старайтесь писать без опечаток.

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма
Сообщение17.12.2014, 22:22 


10/08/11
671
Georgij в сообщении #948241 писал(а):
Рассматривать предложенное вами выражение не имеет смысла, так как оно, кроме $n=3$, отличается от теоремы Ферма, которая имеет вид
$$x^n+y^n-z^n=0$$


Уважаемый Georgij ! Почему не имеет смысла? Разве у Вас что-то другое. В конечном результате Вы получаете три степени и утверждаете, что наблюдается устойчивая динамика увеличения их сумм. Устойчивой динамики нет. И это легко доказывается числовыми примерами на кубах. Например: для $100^3$ ближайшей суммой больше этого куба является ($31^3+99^3-100^3=90$). а для $50^3$ ближайшая сумма больше этого куба $49^3+20^3-50^3=649$. А меньше этого куба $42^3+37^3-50^3=-259$. Кроме того, динамика изменения сумм не может являться доказательством отсутствия нулевого решения.

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма
Сообщение23.12.2014, 18:27 


12/09/14
25
nnosipov в сообщении #948305 писал(а):
Ну хорошо, с парой значений $a=1$, $b=2$ Вы разобрались. А как быть с другими возможными парами значений $a$ и $b$? Ведь нужно рассмотреть все гипотетически возможные пары значений $a$ и $b$.


Рассмотрим выражение $(2)$ с $x=5$

$a=1; b=2$ сумма равна -2
$a=1; b=3$ сумма равна -171
$a=1; b=4$ сумма равна -388

$a=2; b=3$ сумма равна -44
$a=2; b=4$ сумма равна -261
$a=2; b=5$ сумма равна -532

$a=3; b=4$ сумма равна -92
$a=3; b=5$ сумма равна -363
$a=3; b=6$ сумма равна -694

Прослеживается динамика изменения сумм, не стремящихся к нулю. Таким образом, уравнение $(2)$ не имеет решения.

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма
Сообщение23.12.2014, 18:35 
Заслуженный участник


20/12/10
8858
Georgij в сообщении #951246 писал(а):
Прослеживается динамика изменения сумм, не стремящихся к нулю. Таким образом, уравнение $(2)$ не имеет решения.
Такого рода рассуждения никак не могут считаться доказательством. Придумайте что-нибудь получше, иначе тема угодит в "Пургаторий".

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 21 ]  На страницу 1, 2  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: mihaild


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group