romzes200677Если с грехом пополам прочитали-прорешали большую часть Андерсона, значит, причины для впадения в отчаяние Вы преувеличиваете.
Задачу №2 я смог решить по формуле сочетаний , а вот
Не надо заучивать формулы. Надо просто думать и рассуждать. Скажем, одного мы можем выбрать 7-ю способами, еще одного из оставшихся - 6-ю, третьего пятью. А притом еще заметим, что каждая тройка так получается шестью способами, по числу вариантов, кого из трех мы выбирали первым, кого вторым, и кого третьим. Значит, выходит
, и все дела.
а вот
к идее упростить это задачу на более простую , т.е додуматься что число групп можно прибавить к количеству предметов т.е привести к вычисление сочетаний 10 мест и нужно разместить 3 разделителя и решить ее по стандартной формуле )
а это совсем не тривиальная задача! Когда мне нужно узнать, сколько есть одночленов от 3-х переменных степени 3 (а их 10), я тоже не применяю формулу, а просто их перебираю. А я вроде как не тупой.
-- 21.03.2019, 14:15 --Комбинаторике (ну разве исключая самую тривиальщину) не на что опереться в плане житейского опыта или интуиции.
Ничего подобного. Именно комбинаторика очень опирается на обычный опыт.
-- 21.03.2019, 14:16 --Первая задача — это приписывание шарам номеров от 1 до 3.
Нет, конечно.
-- 21.03.2019, 14:28 --Всегда появляется желание решить задачу перебором
И у меня тоже. Это нормальное желание. Зачастую это и есть самый эффективный путь. Это естественно: сначала броситься на задачу с самого очевидного конца, а если не пойдет, тогда и подумать.
-- 21.03.2019, 14:32 --2. Подумайте, какие Ваши привычки (именно, привычки, привычные способы думать) мешали обратить внимание на эти различия.
Подумать можно, ибо думать вообще не вредно. Однако, на таком самоанализировании не стоит зацикливаться, а то можно свихнуться. Но подумать можно.