2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Комплексные числа
Сообщение20.03.2015, 22:56 
Здравствуйте, у меня начинается комплан. Первые занятия понятно просто по теории комплексных чисел. Так вот, недавно мы писали контрольную собственно по комплексным. На задание (ниже) мне написали неверно. Теперь нужно сделать работу над ошибками, а я не понимаю что не так.
Задание:
Сколько значений имеет выражение $z^{n/m}; z \in \mathbb{C} , m,n \in \mathbb{N}, m \neq 0$
Я написала, что m.

 
 
 
 Re: Комплексные числа
Сообщение20.03.2015, 22:57 
То, что вы написали, это не уравнение. В уравнении должен быть знак "равно".

 
 
 
 Re: Комплексные числа
Сообщение20.03.2015, 23:10 
venco писал(а):
То, что вы написали, это не уравнение. В уравнении должен быть знак "равно".

Извините, в задании стоит сколько значений имеет выражение

 
 
 
 Re: Комплексные числа
Сообщение20.03.2015, 23:14 
Аватара пользователя
watmann в сообщении #993248 писал(а):
Здравствуйте, у меня начинается комплан. Первые занятия понятно просто по теории комплексных чисел. Так вот, недавно мы писали контрольную собственно по комплексным. На задание (ниже) мне написали неверно. Теперь нужно сделать работу над ошибками, а я не понимаю что не так.
Задание:
Сколько значений имеет выражение $z^{n/m}; z \in \mathbb{C} , m,n \in \mathbb{N}, m \neq 0$
Я написала, что m.
Интересно, как ваш ответ соотносится, например, со случаем, когда $m=n$?

 
 
 
 Re: Комплексные числа
Сообщение20.03.2015, 23:15 
Попробую придумать, к чему можно придраться.
Первая версия: судя по $m \ne 0$, в $\mathbb{N}$ входит $0$. Что будет, если $n=0$?
Вторая версия: сравните $z^{2\over3}$ и $z^{4\over6}$.

 
 
 
 Re: Комплексные числа
Сообщение20.03.2015, 23:18 
Brukvalub писал(а):
Интересно, как ваш ответ соотносится, например, со случаем, когда $m=n$?

Хорошо, этот случай я пропустила, но разве это отменяет то, что при $m \neq n$ ответ будет m?

 
 
 
 Re: Комплексные числа
Сообщение20.03.2015, 23:21 
Аватара пользователя
watmann в сообщении #993268 писал(а):
Brukvalub писал(а):
Интересно, как ваш ответ соотносится, например, со случаем, когда $m=n$?

Хорошо, этот случай я пропустила, но разве это отменяет то, что при $m \neq n$ ответ будет m?
На таком "уровне" мне трудно с вами говорить. Я буду снова и снова строить контрпримеры, а вы все время будете добавлять их к "упущенным случаям", лишь бы не думать...

 
 
 
 Re: Комплексные числа
Сообщение20.03.2015, 23:24 
venco писал(а):
Первая версия: судя по $m \ne 0$, в $\mathbb{N}$ входит $0$. Что будет, если $n=0$?

Ну, тогда 1. Так же как и с $m = n$

-- 21.03.2015, 00:26 --

Brukvalub писал(а):
На таком "уровне" мне трудно с вами говорить. Я буду снова и снова строить контрпримеры, а вы все время будете добавлять их к "упущенным случаям", лишь бы не думать...

Ну, я вправду упустила этот случай. Учитывая, что преподаватель ставит и по 0,25 балла, то как-то странно, что он ничего не защитал. Вот я пытаюсь понять, хотя бы один случай я правильно рассмотрела?
И, да, я студент и у меня априори низкий уровень. Спасибо.
Не хотела бы думать, вообще бы не писала сюда.

 
 
 
 Re: Комплексные числа
Сообщение20.03.2015, 23:26 
venco в сообщении #993264 писал(а):
Вторая версия: сравните $z^{2\over3}$ и $z^{4\over6}$.

 
 
 
 Re: Комплексные числа
Сообщение20.03.2015, 23:28 
Аватара пользователя
watmann в сообщении #993276 писал(а):
... он ничего не защитал. ..а.
А он и не мог "защитать", обычно препод "засчитывает", а "защитать он может плохого студента до судорог". :D

 
 
 
 Re: Комплексные числа
Сообщение20.03.2015, 23:34 
Brukvalub писал(а):
А он и не мог "защитать", обычно препод "засчитывает", а "защитать он может плохого студента до судорог".

Извините, русский мне не родной. И я часто могу ошибаться в правописании.

-- 21.03.2015, 00:38 --

venco писал(а):
Вторая версия: сравните $z^{2\over3}$ и $z^{4\over6}$.

Сижу и сравниваю)
Выходит 3 или 6. Мы подобное решали на парах. Тут либо я неверно решаю, либо даже не знаю :с

 
 
 
 Re: Комплексные числа
Сообщение20.03.2015, 23:58 
Аватара пользователя
Вы можете показать не результат решения (3 или 6 у Вас получилось), а хоть как-то намекнуть на процесс решения?

 
 
 
 Re: Комплексные числа
Сообщение21.03.2015, 00:02 
svv в сообщении #993291 писал(а):
Вы можете показать не результат решения (3 или 6 у Вас получилось), а хоть как-то намекнуть на процесс решения?

Да, будьте добры. В противном случае тема пойдет в Карантин на доработку.

 
 
 
 Re: Комплексные числа
Сообщение21.03.2015, 00:11 
venco писал(а):
Вы можете показать не результат решения (3 или 6 у Вас получилось), а хоть как-то намекнуть на процесс решения?

Формулы будет писать долго, так что я расскажу.
Для начала возводим в степень 2 или 4 или n. По формуле Муавра получаем изменение модуля (возводим в степень n) числа и новый аргумент (увеличивается в n раз) . Из одного числа получаем одно.
Дальше извлекаем корень степени 3 или 6 или m. Извлекаем корень этой степени из модуля.
Аргумент: $argz = (\arctg{y/x}+2 \pi k)/m$ где $z=x+iy$
Вот тут у нас и появляется m значений.

 
 
 
 Re: Комплексные числа
Сообщение21.03.2015, 00:21 
Аватара пользователя
Совсем другое дело.
Как Вы понимаете, всё дело в аргументах. Нам важно понять, сколько их разных получается.
Пусть аргумент числа $z$ равен $\varphi$ (пишется \varphi).
Какие получатся аргументы у значений $z^{\frac n m}$ ?

-- Пт мар 20, 2015 23:32:06 --

Вы почти правильно написали, только хотелось бы, чтобы исходным было число $z$, без возведения в степень $n$. Надо, чтобы она тоже была в формуле.

 
 
 [ Сообщений: 21 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group