2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Известна одна из медиан и углы, нужно найти площадь.
Сообщение06.03.2015, 11:54 
Задача такая. В треугольнике $ABC$ известны углы $\angle(BAC)=\alpha$, $\angle(ABC)=\beta$, $\angle(BCA)=\gamma$. Медиана $AM=m$. Найдите площадь треугольника.

Изображение

Надо попробовать связать все величины как-то. Я достроил до параллелограмма и ввел обозначения, может пригодится.

Искомая площадь $S=0,5ab\sin\alpha=bc\sin\gamma=ac\sin\beta$.

Можно написать связь диагоналей и сторон параллелограмма.

$2a^2+2b^2=4m^2+4c^2$.

Теорема косинусов для двух маленьких треугольников.

$m^2=c^2+b^2-bc\cos\gamma=a^2+c^2-2ac\cos\beta$.

Дальше пока не вижу -- в какую сторону думать. Подскажите, пожалуйста!

 
 
 
 Re: Известна одна из медиан и углы, нужно найти площадь.
Сообщение06.03.2015, 12:12 
Аватара пользователя
Существуют формулы, выражающие площадь треугольника по одной из его сторон и двум прилежащим углам (или всем трем). Например, $S=\frac{a^2 \sin \beta \sin \gamma}{2\sin \alpha} = \frac{c^2}{2(\ctg \alpha + \ctg \beta)}. Неизвестную сторону можно найти, зная медиану и углы.

 
 
 
 Re: Известна одна из медиан и углы, нужно найти площадь.
Сообщение06.03.2015, 12:17 
Аватара пользователя
Если уж совсем в лоб, то с помощью теоремы синусов можно выразить через $c$, например, все остальные стороны. А далее по Вашим формулам всё и получится. Может быть, увидев ответ, Вы придумаете более изящное решение.

 
 
 
 Re: Известна одна из медиан и углы, нужно найти площадь.
Сообщение06.03.2015, 12:20 
По теореме синусов $a=m\frac{\sin\delta}{\sin\beta}$ и $b=m\frac{\sin\delta}{\sin\gamma}$, где $\delta$ -- какой-либо из углов с вершиной в точке $M$. Для полного счастья не хватает $\sin^2\delta$ (квадрата, т.к. интересовать нас должно $ab$). Ну так выразите удвоенную медиану по теореме косинусов из треугольника $ABD$ и подставьте туда выражения для $a$ и $b$ -- сразу нужный квадрат синуса и выскочит.

 
 
 
 Re: Известна одна из медиан и углы, нужно найти площадь.
Сообщение06.03.2015, 12:47 
ewert в сообщении #986368 писал(а):
По теореме синусов $a=m\frac{\sin\delta}{\sin\beta}$ и $b=m\frac{\sin\delta}{\sin\gamma}$, где $\delta$ -- какой-либо из углов с вершиной в точке $M$. Для полного счастья не хватает $\sin^2\delta$ (квадрата, т.к. интересовать нас должно $ab$). Ну так выразите удвоенную медиану по теореме косинусов из треугольника $ABD$ и подставьте туда выражения для $a$ и $b$ -- сразу нужный квадрат синуса и выскочит.

Именно для треугольника $ABD$ теорему косинусов? Там же нет угла $\delta$. Для какого угла там?

 
 
 
 Re: Известна одна из медиан и углы, нужно найти площадь.
Сообщение06.03.2015, 12:52 
Andrei94 в сообщении #986376 писал(а):
Именно для треугольника $ABD$ теорему косинусов? Там же нет угла $\delta$.

Именно для него. Там этого угла нет, ну и не нужно -- он есть в выражениях для $a$ и $b$. После подстановки этих выражений в теорему косинусов $m^2$ сократится и останется только $\sin^2\delta$ (не считая известных углов).

 
 
 
 Re: Известна одна из медиан и углы, нужно найти площадь.
Сообщение06.03.2015, 14:58 
Аватара пользователя
Как вариант - по формуле для медианы через стороны и теореме синусов определяем радиус описанной окружности R, затем подставляем в формулу для площади через R и углы.

 
 
 
 Re: Известна одна из медиан и углы, нужно найти площадь.
Сообщение06.03.2015, 15:38 

(Оффтоп)

Hasek в сообщении #986365 писал(а):
Например, $S=\frac{a^2 \sin \beta \sin \gamma}{2\sin \alpha} = \frac{c^2}{2(\ctg \alpha + \ctg \beta)}.

Евгений Машеров в сообщении #986452 писал(а):
по формуле для медианы через стороны и теореме синусов определяем радиус описанной окружности К, затем подставляем в формулу для площади через R и углы.

Ребята, вы слишком много формул знаете. Между тем: меньше знаешь -- лучше спишь.

 
 
 
 Re: Известна одна из медиан и углы, нужно найти площадь.
Сообщение07.03.2015, 20:31 
Аватара пользователя
Не знаю, может, и перемудрил, но если даны три угла - сразу теорема синусов вспоминается, а в ней радиус описанной окружности. Если задана длина медианы - вспоминается её связь со сторонами. Единственная формула, которая вроде не из школьной программы (а может, просто забыл, и в силу склероза в справочник полез)
$S=\frac {abc}{4R}$

 
 
 
 Re: Известна одна из медиан и углы, нужно найти площадь.
Сообщение07.03.2015, 20:52 

(Оффтоп)

Евгений Машеров в сообщении #987090 писал(а):
Не знаю, может, и перемудрил,

Не знаю, может и нет; но в моём представлении для треугольников существуют лишь две теоремы (не считая Пифагора, конечно): это -- теоремы синусов и косинусов. Все прочие примерно в 99.95% случаев бесполезны, в остальных же полезными могут оказаться разве что ради самоутверждения сочинителей.

Однако конкретно здесь сочинители вроде и не пытались самоутверждаться.

 
 
 
 Re: Известна одна из медиан и углы, нужно найти площадь.
Сообщение07.03.2015, 23:05 

(Оффтоп)

Евгений Машеров, меньше знаешь -- лучше спишь.

Andrei94
Изображение
Вы про скалярное произведение слышали что-нибудь? Обозначим $\overrightarrow{AB}=\overrightarrow{a}$, $\overrightarrow{AC}=\overrightarrow{b}$, $\overrightarrow{BM}=\overrightarrow{c}$, тогда медиана $\overrightarrow{AM}=\overrightarrow{m}=\frac{1}{2}\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}$.
Теперь с одной стороны $(-\overrightarrow{a})\overrightarrow{c}=ac\cos \beta$
С другой стороны $(-\overrightarrow{a})\overrightarrow{c}=(-\overrightarrow{a})(\frac{1}{2}\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}-\overrightarrow{a})=(-\overrightarrow{a})(\frac{1}{2}\overrightarrow{b}-\frac{1}{2}\overrightarrow{a})=\frac{1}{2}(\overrightarrow{a}^2-\overrightarrow{a} \overrightarrow{b})=\frac{1}{2}(a^2-ab\cos \alpha)$

Приравниваем, сокращаем на $a$, получаем уравнение. Теперь, как вы правильно заметили, нам поможет векторное произведение. Если у вас есть конкретные значения углов, то всё будет выглядеть намного проще.

 
 
 
 Re: Известна одна из медиан и углы, нужно найти площадь.
Сообщение14.03.2015, 19:43 
Хотя автор темы с 6-го числа форум не посещал, попробую предложить еще такое решение.
Сначала построим подобный треугольник, задав одну из сторон произвольным образом.
Далее по Т. Синусов. найдем длины остальных сторон.
Посчитаем длину медианы получившегося треугольника по известной формуле.
Ну а далее - коэффициент подобия и, следовательно легко считается площадь искомого треугольника.
Может быть долго, зато не надо каких-то изощренных формул выискивать и, главное, ничего потом доказывать не надо,
т.к. все построения/рассчеты очевидны.

 
 
 
 Re: Известна одна из медиан и углы, нужно найти площадь.
Сообщение14.03.2015, 20:49 
Для простоты составления формул я взял $a=1$

 
 
 
 Re: Известна одна из медиан и углы, нужно найти площадь.
Сообщение15.03.2015, 00:33 
Если ничего не напутал получилась следующая формула:

$S=\sin\alpha\sin\beta/\sin\gamma\cdot4m^2/(2+2(\sin\alpha/\sin\beta)^2-(\sin\alpha/\sin\gamma)^2)$

 
 
 
 Re: Известна одна из медиан и углы, нужно найти площадь.
Сообщение15.03.2015, 04:27 
Аватара пользователя
timtam в сообщении #990447 писал(а):
Если ничего не напутал получилась следующая формула:

$S=\sin\alpha\sin\beta/\sin\gamma\cdot4m^2/(2+2(\sin\alpha/\sin\beta)^2-(\sin\alpha/\sin\gamma)^2)$

При $\gamma = \pi/2, \alpha=\beta=\pi/4$ должно быть $m^2$.
У Вас же что-то более громоздкое.

 
 
 [ Сообщений: 30 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group