2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Отынтегрироваться
Сообщение02.03.2015, 17:34 
Аватара пользователя
Slow в сообщении #984705 писал(а):
Пусть $k<0$, $\cos(kx)=\cos(-kx)$.

Вы меня совсем не понимаете.

 
 
 
 Re: Отынтегрироваться
Сообщение02.03.2015, 21:21 
r0ma в сообщении #984628 писал(а):
Вот эти рассуждения мои верны?
По-моему очень даже верны. Что касается знака $k$ - делайте замену переменной $\omega = |k|x$ и всё. (Можно и вашу $\omega = kx$ оставить, но тогда со знаком верхнего предела интегрирования надо разобраться.)

-- 02.03.2015, 22:27 --

Ну и, логикой полезно пользоваться - если, как вам "намекает" Slow, у вас было выражение, независящее от знака $k$, а получилось неопределённое при $k$, значит вы где-то сделали глупую ошибку (глупые ошибки я в оценке "очень верны" не считал, поскольку они легко исправляются).

 
 
 
 Re: Отынтегрироваться
Сообщение03.03.2015, 01:42 
Аватара пользователя
warlock66613 в сообщении #984808 писал(а):
Ну и, логикой полезно пользоваться - если, как вам "намекает" Slow, у вас было выражение, независящее от знака $k$, а получилось неопределённое при $k$, значит вы где-то сделали глупую ошибку (глупые ошибки я в оценке "очень верны" не считал, поскольку они легко исправляются).

Я могу подробно проделать и показать, что именно я имею ввиду.
$$\int_{\xi_0}^{+\infty}\frac{\cos kx}{x} dx = \int_{k\xi_0}^{+\infty}\frac{\cos kx}{kx} d(kx) = \int_{k\xi_0}^{+\infty}\frac{\cos \omega}{\omega} d\omega.$$
Интегральный косинус опрелён так, что его аргументом является нижний предел, причём, аргумент должен быть строго больше нуля. Другими словами
$$\int_{k\xi_0}^{+\infty}\frac{\cos \omega}{\omega} d\omega = -\operatorname{Ci}(k\xi_0).$$
Для существования необходимо, чтобы $k\xi_0 >0$. Так как $\xi_0 >0$, потому что я его так ввёл, соответсвенно $k$ может быть только больше нуля.

Вот что я подразумевал.

 
 
 
 Re: Отынтегрироваться
Сообщение03.03.2015, 02:19 
Аватара пользователя
r0ma в сообщении #984904 писал(а):
$$\int_{\xi_0}^{+\infty}\frac{\cos kx}{x} dx = \int_{k\xi_0}^{+\infty}\frac{\cos kx}{kx} d(kx) = \int_{k\xi_0}^{+\infty}\frac{\cos \omega}{\omega} d\omega.$$
...
Вот что я подразумевал.

Это как раз всем понятно. Лучше бы Вы или ещё в самой левой части формулы сказали "при отрицательном $k$ воспользуемся чётностью косинуса" или, если совсем уж охота поупрямиться, то хотя бы за пределами интегрирования проследили не только с одной стороны, но и с другой. А то у Вас ноль снова как-то попал в эти пределы.

 
 
 
 Re: Отынтегрироваться
Сообщение03.03.2015, 10:49 
Slow в сообщении #984705 писал(а):
Пусть $k<0$, $\cos(kx)=\cos(-kx)$.

$\omega=-kx$

$$\int_{\xi_0}^{+\infty}\frac{\cos kx}{|x|}dx=\int_{k\xi_0}^{+\infty}\frac{\cos \omega}{\omega} d\omega (k>0)$$
$$\int_{\xi_0}^{+\infty}\frac{\cos kx}{|x|}dx\ne \int_{k\xi_0}^{+\infty}\frac{\cos \omega}{\omega} d\omega (k<0)$$
Или я опять что то не так понял?

 
 
 
 Re: Отынтегрироваться
Сообщение03.03.2015, 12:08 
Аватара пользователя
Не. Вот. Всё. От знака $k$ тут ничего не зависит.

$$\int_{|k|\xi_0}^{+ \infty} \frac{\cos\omega}{\omega}d\omega = \operatorname{Ci}(|k|\xi_0),$$
где $\omega = |k| x$. Это правильно.

 
 
 [ Сообщений: 21 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group