2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Оптимальная стратегия выбора большего числа
Сообщение29.01.2015, 07:53 
Вася выбирает два случайных вещественных числа с неизвестным для Пети распределением, записывает их на листочках, ложит в конверты. Петя берет один конверт, смотрит на число и должен определить, в другом конверте число больше или меньше. Петя выигрывает мильон долларов, если угадывает.

Есть ли стратегия с шансами более 1/2?

Мой ответ: нет, ибо раз Петя не знает распределение, то и повышать свои шансы за счёт него не может.Но есть некоторые сомнения.

 
 
 
 Re: Оптимальная стратегия выбора большего числа
Сообщение29.01.2015, 07:59 
Аватара пользователя
Какие сомнения? Для известного распределения также будет 1/2.

 
 
 
 Re: Оптимальная стратегия выбора большего числа
Сообщение29.01.2015, 08:27 
Аватара пользователя
Александрович в сообщении #970356 писал(а):
Для известного распределения также будет 1/2.

По известному распределению можно вычислить матожидание, - а значит повысить свои шансы на угадывание "больше-меньше".

 
 
 
 Re: Оптимальная стратегия выбора большего числа
Сообщение29.01.2015, 12:13 
Александрович в сообщении #970356 писал(а):
Какие сомнения? Для известного распределения также будет 1/2.

Вы -- Петя, у вас конверт с числом 1. Распределение вам Вася сказал: он выбирает 0 с вероятностью 99.99%, 1 иначе. Вы считаете эту информацию лишней и для отаета на вопрос больше/меньше кидаете монетку?..

 
 
 
 Re: Оптимальная стратегия выбора большего числа
Сообщение29.01.2015, 12:21 
Аватара пользователя
atlakatl в сообщении #970359 писал(а):
По известному распределению можно вычислить матожидание, - а значит повысить свои шансы на угадывание "больше-меньше".

Я Вася, из стандартного нормального распределения извлек два числа 0.543 и 0.789, запечатал их в конверт и один отдал вам. Вы Петя, открываете конверт и видите одно из чисел. Вы также знаете что числа я извлекаю из нормального распределения с мо=0 и ско=1. Угадывайте, больше или меньше число в другом конверте.

 
 
 
 Re: Оптимальная стратегия выбора большего числа
Сообщение29.01.2015, 12:46 
Аватара пользователя
Это одна из тех задач, где верный ответ настолько возмутителен, что порождает бесконечные холивары.
Здесь было уже когда-то, но не могу найти.

 
 
 
 Re: Оптимальная стратегия выбора большего числа
Сообщение29.01.2015, 13:28 
Аватара пользователя
Александрович в сообщении #970435 писал(а):
atlakatl в сообщении #970359 писал(а):
По известному распределению можно вычислить матожидание, - а значит повысить свои шансы на угадывание "больше-меньше".

Я Вася, из стандартного нормального распределения извлек два числа 0.543 и 0.789, запечатал их в конверт и один отдал вам. Вы Петя, открываете конверт и видите одно из чисел. Вы также знаете что числа я извлекаю из нормального распределения с мо=0 и ско=1. Угадывайте, больше или меньше число в другом конверте.


Если мне известно, что число в другом конверте взято из стандартного нормального распределения, и известно значение числа в моём конверте (каким образом оно получено, совершенно не важно), то я уже могу судить о вероятности того, что число во втором конверте больше заданного, и для случая видимого 0.543 уверенно скажу "второе меньше", оказавшись прав в 70.64% случаев, а для случая 0.789 прав с тем же утверждением буду в 78.49% случаев.
Решающее правило, собственно, очень простое. Если первое число больше нуля, можно заявлять "второе меньше", если меньше нуля - "второе больше". Если ещё можно маневрировать размером ставки - можно учесть вероятность и получить крайне выгодную стратегию.

 
 
 
 Re: Оптимальная стратегия выбора большего числа
Сообщение29.01.2015, 13:43 
Аватара пользователя
Александрович в сообщении #970435 писал(а):
больше или меньше число в другом конверте.

В данном случае ФР симметрична относительно $OY$. Оба числа положительны. И Пете в обоих случаях резон заявить, что его число больше.
При $0,543$ он ошибётся, при $0,789$ угадает. Но при увеличении количества выборок по СНР Петя неизменно будет угадывать чаще, чем проигрывать.
PS. Извиняюсь, пока писал, Евгений Машеров ответил.

 
 
 
 Re: Оптимальная стратегия выбора большего числа
Сообщение29.01.2015, 15:24 
Аватара пользователя
Евгений Машеров в сообщении #970455 писал(а):
Александрович в сообщении #970435 писал(а):
Я Вася, из стандартного нормального распределения извлек два числа 0.543 и 0.789, запечатал их в конверт и один отдал вам. Вы Петя, открываете конверт и видите одно из чисел. Вы также знаете что числа я извлекаю из нормального распределения с мо=0 и ско=1. Угадывайте, больше или меньше число в другом конверте.


Если мне известно, что число в другом конверте взято из стандартного нормального распределения, и известно значение числа в моём конверте (каким образом оно получено, совершенно не важно), то я уже могу судить о вероятности того, что число во втором конверте больше заданного, и для случая видимого 0.543 уверенно скажу "второе меньше", оказавшись прав в 70.64% случаев, а для случая 0.789 прав с тем же утверждением буду в 78.49% случаев.
Решающее правило, собственно, очень простое. Если первое число больше нуля, можно заявлять "второе меньше", если меньше нуля - "второе больше". Если ещё можно маневрировать размером ставки - можно учесть вероятность и получить крайне выгодную стратегию.

Статистическое моделирование даёт вероятность 0,5.

 
 
 
 Re: Оптимальная стратегия выбора большего числа
Сообщение29.01.2015, 15:32 
Аватара пользователя
Я даже промоделировал такую игру, с генерацией двух стандартно-нормальных с.ч., затем по одному из них делается решение на основании описанного правила, и затем проверяется, угадал ли. Зная только знак первого числа, можно с вероятностью более $\frac 1 2$ угадывать, но если учесть его величину - возможно оценка вероятности угадывания, и ею определяется оптимальная ставка. Как легко получить, для такой игры, когда с вероятностью p, поставив X, выигрываешь X сверх ставки, а с вероятностью (1-p) проигрываешь X, оптимальная ставка, выраженная в долях капитала, равна $X_{opt}=2p-1$ (очевидно, при $p<0.5$ играть вовсе не стоит)

(Оффтоп)

Дойдя на сотой итерации до полуторамиллиардного увеличения начальной суммы, я пригорюнился, по случаю отсутствия в моём компьютере денежного принтера...


-- 29 янв 2015, 15:56 --

Александрович в сообщении #970514 писал(а):
Евгений Машеров в сообщении #970455 писал(а):
Александрович в сообщении #970435 писал(а):
Я Вася, из стандартного нормального распределения извлек два числа 0.543 и 0.789, запечатал их в конверт и один отдал вам. Вы Петя, открываете конверт и видите одно из чисел. Вы также знаете что числа я извлекаю из нормального распределения с мо=0 и ско=1. Угадывайте, больше или меньше число в другом конверте.


Если мне известно, что число в другом конверте взято из стандартного нормального распределения, и известно значение числа в моём конверте (каким образом оно получено, совершенно не важно), то я уже могу судить о вероятности того, что число во втором конверте больше заданного, и для случая видимого 0.543 уверенно скажу "второе меньше", оказавшись прав в 70.64% случаев, а для случая 0.789 прав с тем же утверждением буду в 78.49% случаев.
Решающее правило, собственно, очень простое. Если первое число больше нуля, можно заявлять "второе меньше", если меньше нуля - "второе больше". Если ещё можно маневрировать размером ставки - можно учесть вероятность и получить крайне выгодную стратегию.

Статистическое моделирование даёт вероятность 0,5.


Это интересно. Я, как сказано выше, такое моделирование провёл, и мои результаты отличны от Ваших (и вообще отличны и даже замечательны, жаль, что нет казино с такими условиями 8-) )
Можно ли узнать методику Вашего моделирования?

 
 
 
 Re: Оптимальная стратегия выбора большего числа
Сообщение29.01.2015, 18:30 
ИСН в сообщении #970443 писал(а):
Это одна из тех задач, где верный ответ настолько возмутителен, что порождает бесконечные холивары.
Использовать полученную информацию, чтобы приближать и приближать распределение?

 
 
 
 Re: Оптимальная стратегия выбора большего числа
Сообщение29.01.2015, 18:43 
arseniiv
А что если розыгрыш только один?

 
 
 
 Re: Оптимальная стратегия выбора большего числа
Сообщение29.01.2015, 18:51 
Мне как раз и интересно, что имелось в виду под возмутительным результатом. :-)

Вообще, чтобы определить вероятность удачи в игре при незнакомом распределении у Васи, надо сначала определить вероятностное пространство распределений, или показать, что при любом будет одна и та же. (Может, этот результат и есть возмутительный?)

 
 
 
 Re: Оптимальная стратегия выбора большего числа
Сообщение29.01.2015, 19:29 
Аватара пользователя
arseniiv в сообщении #970679 писал(а):
Мне как раз и интересно, что имелось в виду под возмутительным результатом. :-)

Смотрите: topic53418.html

 
 
 
 Re: Оптимальная стратегия выбора большего числа
Сообщение29.01.2015, 19:48 
А, ну там и постановку вы написали понятнее. Интересно. :-)

 
 
 [ Сообщений: 16 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group