2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: Задача Дирихле в полосе
Сообщение20.01.2015, 14:57 
Ну тогда из уравнения получается бред, что константа равна функции:
$C_1+C_2=\frac{1}{\sqrt{2\pi}i(\omega-i 0)}$.
Что с этим делать?

 
 
 
 Re: Задача Дирихле в полосе
Сообщение20.01.2015, 15:37 
Аватара пользователя
gammaker в сообщении #965577 писал(а):
Ну тогда из уравнения получается бред, что константа равна функции:


Вы решали ОДУ и нашли решение, зависящее oт двух "констант" $C_1,C_2$. Но что значит "констант"? Только то, что они не зависят от $y$ поскольку ОДУ было по $y$. Т.е. на самом деле $Cj=C_j(\omega)$.

 
 
 
 Re: Задача Дирихле в полосе
Сообщение20.01.2015, 16:04 
Red_Herring в сообщении #965614 писал(а):
Вы решали ОДУ и нашли решение, зависящее oт двух "констант" $C_1,C_2$. Но что значит "констант"? Только то, что они не зависят от $y$ поскольку ОДУ было по $y$. Т.е. на самом деле $Cj=C_j(\omega)$.

Точно, не заметил, что переменные-то разные.

Нашёл $C_1, C_2$ из граничных условий. Получил такое решение:
$u(x,y)=\frac{1}{2\pi i}[\int\limits_{-\infty}^{+\infty}\frac{e^{\omega y}e^{i\omega x}}{(\omega-i 0)(1-e^{2\omega\pi})}d\omega + \int\limits_{-\infty}^{+\infty}\frac{e^{-\omega y}e^{i\omega x}}{(\omega-i 0)(1-e^{-2\omega\pi})}d\omega]$
Эти интегралы вычетами брать?

 
 
 
 Re: Задача Дирихле в полосе
Сообщение20.01.2015, 16:21 
gammaker
Ошибки при вычислении "констант" точно нет? Почему у вас омега стоит в числителе у них?

 
 
 
 Re: Задача Дирихле в полосе
Сообщение20.01.2015, 16:26 
Аватара пользователя
А с чего вдруг $\omega$ в числитель вылезло? Оно у Вас в знаменателе, причем с $-i0$.

Можно и вычеты применить

 
 
 
 Re: Задача Дирихле в полосе
Сообщение20.01.2015, 16:27 
Ошибся, должно быть в знаменателе. Исправил пост выше.

 
 
 
 Re: Задача Дирихле в полосе
Сообщение20.01.2015, 16:29 
Аватара пользователя
gammaker в сообщении #965645 писал(а):
Исправил пост выше.

Плохо исправили: забыли $-i0$ что важно в $0$ при обходе которого контур должен чуть-чуть выехать в нижнюю комплексную полуплпоскость

 
 
 
 Re: Задача Дирихле в полосе
Сообщение20.01.2015, 16:31 
Red_Herring

(Оффтоп)

Кстати, а нельзя эту добавку $\[ - i0\]$ записать в виде Дираковской функции в нуле (с коэффициентом, конечно)? Мне кажется удобнее...

 
 
 
 Re: Задача Дирихле в полосе
Сообщение20.01.2015, 16:39 
Аватара пользователя

(Оффтоп)

Ms-dos4 в сообщении #965648 писал(а):
Кстати, а нельзя эту добавку $\[ - i0\]$ записать в виде Дираковской функции в нуле (с коэффициентом, конечно)? Мне кажется удобнее...

Можно, тк. $(\omega -i0)^{-1}-(\omega +i0)^{-1}=2\pi i\delta(\omega)$, $(\omega -i0)^{-1}+(\omega +i0)^{-1}=2\omega^{-1}$, но только осторожно: тогда если в знаменателе чистое $\omega^{-1}$ то интеграл понимается в смысле главного значения, а брать-то все одно через вычеты.

 
 
 [ Сообщений: 24 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group