2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Нормальные числа. Абсолютно и не очень.
Сообщение08.01.2015, 07:05 
Аватара пользователя
В ru.wikipedia.org/wiki/Нормальное_число приведено определение:
Цитата:
Нормальное число по основанию $n$ $(n \in \mathbb{N}, n \geqslant 2)$ — всякое действительное число, в записи которого в $n$-ричной системе счисления каждая группа из $k$ последовательных цифр встречается с одной и той же асимптотической частотой, равной $n^k$ для каждого $k = 1, 2, …$

Числа, нормальные по любому основанию $n$, называются нормальными или абсолютно нормальными.

Вот по последнему определению у меня вопрос.
Ясно, что рациональное число всегда формирует периодически повторяющуюся последовательность цифр. - И эта "периодичность" будет возникать при любом основании.
Обратно, иррациональное число периодичной повторяемости никогда не образует, - и это опять будет повторяться при любом основании.
Идём дальше.
Число, записанное в двоичной системе счисления, в восьмеричную перевести совсем просто. Заменим каждую тройку цифр из первого числа на соответствующую ей цифру во втором: $000$ на $0$, $100$ на $4$, $110$ на $6$ и т.д. - Не зря $8$ является одной из степеней числа $2$.
Перевод двоичного числа в десятичное сложнее: ни одна степень $2$ не совпадает со степенями $10$. И блоков фиксированной длины для быстрого перевода подобрать не удастся.
Но тем не менее, "перетекание" из одной системы счисления в другую будет описываться не столь сложной математикой.
Так неужели математики до сих пор не доказали интуитивно понятного факта: нормальное число нормально при любом основании?

 
 
 
 Re: Нормальные числа. Абсолютно и не очень.
Сообщение08.01.2015, 09:50 
Аватара пользователя
1) Рациональное число всегда ненормально.

2) Да ладно? Тривиально? Вот есть, допустим, некое число, в записи которого в восьмеричной системе никогда не встречается число $1111$. Вот все остальные встречаются, а это никогда. Что при этом можно сказать о записи того же числа в семиричной системе? По-моему, абсолютно ничего.

 
 
 
 Re: Нормальные числа. Абсолютно и не очень.
Сообщение08.01.2015, 10:16 
Аватара пользователя
atlakatl в сообщении #958431 писал(а):
Так неужели математики до сих пор не доказали интуитивно понятного факта: нормальное число нормально при любом основании?


Не доказали потому, что факт этот ложен.

-- 08 янв 2015, 10:23 --

Вот такой тупой контрпример. Берём цифры 0..9, переставляем их в случайном порядке, получаем последовательность из 10 цифр, и получаем число, приписывая полученные так (разные! случайно выбранные!) последовательности бесконечно много раз. Число, очевидно, нормально по основанию 10. По другому основанию - нет.

 
 
 
 Re: Нормальные числа. Абсолютно и не очень.
Сообщение08.01.2015, 10:34 
Аватара пользователя
Евгений Машеров в сообщении #958455 писал(а):
Вот такой тупой контрпример. Берём цифры 0..9, переставляем их в случайном порядке, получаем последовательность из 10 цифр, и получаем число, приписывая полученные так (разные! случайно выбранные!) последовательности бесконечно много раз. Число, очевидно, нормально по основанию 10.

С какого перепугу это число нормально в десятичной системе? В нём наверняка не будут встречаться последовательности $000, 111, 222, 333, ... и т.д., - не говоря уж о более сложных комплексах.

 
 
 
 Re: Нормальные числа. Абсолютно и не очень.
Сообщение08.01.2015, 11:31 
Аватара пользователя
atlakatl в сообщении #958431 писал(а):
В ru.wikipedia.org/wiki/Нормальное_число приведено определение:

Очень часто при использовании Википедии бывает полезно прочитать ещё 5-7 строчек после определения. В них частенько разъясняются вопросы, которые чаще всего приходят в голову новичкам :)
А интуиция -- дело наживное. Если не упорствовать, она, как правило, быстро лечится.

 
 
 
 Re: Нормальные числа. Абсолютно и не очень.
Сообщение08.01.2015, 12:09 
Аватара пользователя
grizzly в сообщении #958473 писал(а):
интуиция -- дело наживное. Если не упорствовать, она, как правило, быстро лечится.

Ждал этого тезиса. В конце сабжевой статьи пишется:
Цитата:
Существует общее мнение, что числа $ \pi $ и $ e $ нормальны. Однако даже подходы к доказательству этого не ясны.

Будем "лечить" авторов статьи?

-- 08.01.2015, 15:27 --

INGELRII в сообщении #958451 писал(а):
некое число, в записи которого в восьмеричной системе никогда не встречается число $1111$. Вот все остальные встречаются, а это никогда. Что при этом можно сказать о записи того же числа в семиричной системе? По-моему, абсолютно ничего.

Не так много, но кое-что. Оно не может начинаться на $1464_7$, - это $1111_8$. Дальше сложнее, но закономерности будут, хоть и всё сложнее. А значит на больших промежутках комплексы типа $1464_7$ будут встречаться реже прочих. - Вот и ненормальность.

 
 
 
 Re: Нормальные числа. Абсолютно и не очень.
Сообщение08.01.2015, 15:35 
atlakatl в сообщении #958482 писал(а):
В конце сабжевой статьи пишется:
Цитата:
Существует общее мнение, что числа $ \pi $ и $ e $ нормальны. Однако даже подходы к доказательству этого не ясны.

Будем "лечить" авторов статьи?
А зачем их лечить? Прааавильно: совершенно незачем...

atlakatl в сообщении #958431 писал(а):
Обратно, иррациональное число периодичной повторяемости никогда не образует, - и это опять будет повторяться при любом основании.
Возьмем число $\xi=\sum\limits_{k=1}^{+\infty}10^{-(1+2+...+k)}$.
Очевидно, что оно иррационально.
Является ли оно нормальным в $10$-чной системе счисления?
Является ли оно абсолютно нормальным? (для ответа на последний вопрос предлагается воспользоваться экспериментом)

 
 
 
 Re: Нормальные числа. Абсолютно и не очень.
Сообщение08.01.2015, 16:11 
Аватара пользователя
Sonic86 в сообщении #958563 писал(а):
Является ли оно нормальным в $10$-чной системе счисления?
Является ли оно абсолютно нормальным? (для ответа на последний вопрос предлагается воспользоваться экспериментом)

Для ясности: это число $0,101001000100001000001...$
1. Оно явно не нормально в $10$-чной системе счисления, - в нём только цифры $0$ и $1$.
2. Оно явно не абсолютно нормально (см. п.1).
PS. "Пользоваться экспериментом" для проверки абсолютной нормальности числа бессмысленно: для этого надо проверить его представление для каждого (а их бесконечное число) основания на бесконечном же промежутке.

 
 
 
 Re: Нормальные числа. Абсолютно и не очень.
Сообщение08.01.2015, 16:19 
atlakatl в сообщении #958588 писал(а):
PS. "Пользоваться экспериментом" для проверки абсолютной нормальности числа бессмысленно: для этого надо проверить его представление для каждого (а их бесконечное число) основания на бесконечном же промежутке.
Ну-ну, а еще в математике нет гипотез. Гипотезу выдвинете.

 
 
 
 Re: Нормальные числа. Абсолютно и не очень.
Сообщение08.01.2015, 16:28 
Аватара пользователя
Sonic86 в сообщении #958591 писал(а):
Гипотезу выдвинете.

Да я её и выдвинул:
atlakatl в сообщении #958431 писал(а):
математики до сих пор не доказали интуитивно понятного факта: нормальное число нормально при любом основании

В результате огрёб от grizzly:
grizzly в сообщении #958473 писал(а):
интуиция -- дело наживное. Если не упорствовать, она, как правило, быстро лечится.

 
 
 
 Re: Нормальные числа. Абсолютно и не очень.
Сообщение08.01.2015, 16:41 
atlakatl в сообщении #958595 писал(а):
Sonic86 в сообщении #958591 писал(а):
Гипотезу выдвинете.

Да я её и выдвинул:
atlakatl в сообщении #958431 писал(а):
математики до сих пор не доказали интуитивно понятного факта: нормальное число нормально при любом основании

В результате огрёб от grizzly:
grizzly в сообщении #958473 писал(а):
интуиция -- дело наживное. Если не упорствовать, она, как правило, быстро лечится.
Ищите ошибку в своем рассуждении: какая связь между интуицией и эмпирической проверкой?
Кроме того, Вы сформулировали скорее всего неверную гипотезу, потенциальный контрпример - число $\xi$.
Кроме того, я просил Вас выдвинуть гипотезу нормальности или нет числа $\xi$ по основанию $3$, например.

 
 
 
 Re: Нормальные числа. Абсолютно и не очень.
Сообщение08.01.2015, 16:42 
Аватара пользователя
atlakatl
Попрошу! Я Вам аргументацию привел (:
grizzly в сообщении #958473 писал(а):
при использовании Википедии бывает полезно прочитать ещё 5-7 строчек после определения.

Там описаны реальные трудности вопроса с конкретным примером.

 
 
 
 Re: Нормальные числа. Абсолютно и не очень.
Сообщение08.01.2015, 17:46 
Аватара пользователя
Sonic86 в сообщении #958604 писал(а):
какая связь между интуицией и эмпирической проверкой?

Часто прямая: наблюдение формирует или отвергает интуитивную гипотезу, а гипотеза мотивирует субъекта на опыты.
Sonic86 в сообщении #958604 писал(а):
я просил Вас выдвинуть гипотезу нормальности или нет числа $\xi$ по основанию $3$, например.

Попробовал на калькуляторе http://planetcalc.ru/375/ перевести целое число (а какая разница?) $101001000100001000001000000100000001000000001$ на основания $3, 5, 7, 11$. Никакой упорядоченности для этих представлений не наблюдается.
Да, моё предположение
atlakatl в сообщении #958431 писал(а):
нормальное число нормально при любом основании
эмпирически не подтверждается. Если 10-ичное $\xi$ точно не нормально, то на этих основаниях ненормальности не наблюдается.
grizzly в сообщении #958606 писал(а):
atlakatl
Попрошу!

Я Вас чем-то обидел? Как?
grizzly в сообщении #958606 писал(а):
Там описаны реальные трудности вопроса с конкретным примером.

Так о том и пост: интуитивно вроде бы нормальность всегда абсолютна, а "реальные трудности" существуют.
Впрочем, аргументация Sonic86 меня убедила. Ответ я получил.

 
 
 
 Re: Нормальные числа. Абсолютно и не очень.
Сообщение08.01.2015, 17:57 
Аватара пользователя
atlakatl
То, что оно не может начинаться на $1464$, никак не означает, что впоследствии эта последовательность будет встречаться реже прочих. Можно, наоборот, подобрать число так, что она будет встречаться гораздо чаще остальных.

(Оффтоп)

Например, если взять обычную монету и подбросить ее. Пусть первым выпал орел. По вашей логике, это значит, что впредь решка будет выпадать реже орла?


Вы просто попробуйте в явном виде формализовать те закономерности, которые вам так ясны интуитивно. Мне вот не ясны, мне даже интуитивно ясно, что нет там никаких закономерностей! Ну просветите меня глупого.

 
 
 
 Re: Нормальные числа. Абсолютно и не очень.
Сообщение08.01.2015, 18:15 
Аватара пользователя

(Оффтоп)

atlakatl в сообщении #958648 писал(а):
Я Вас чем-то обидел?

Смайлик не заметили? (: или не расшифровали? :)

atlakatl в сообщении #958648 писал(а):
интуитивно вроде бы нормальность всегда абсолютна

Безо всякой интуиции понятно, что ненормальность по любому основанию имеет меру 0. От того и понятно интуитивно, что объединение по всем основанием ненормальных имеет ту же меру. Больше интуиция ничего толкового здесь никому не скажет без глубокого погружения в вопрос.

 
 
 [ Сообщений: 16 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group