Вчера проверила массив, подающий большие надежды (из приведённых 
svb)
Код:
0 6 12 16 22 28 30 40 42 46 48 60 72 76 78 82 88 90 100 106 112 118 120 126 130 132 142 156 160 162 166 180 186 196 198 202
Вообще-то, я его конечно, проверяла и раньше, когда только начинала поиск второго квадрата.
Программа 
svb проверяла этот массив почти 7 часов!!
Код:
Summa=588
Time: 24546.88 sec
Судя по информации, выведенной на экран, существует решение всего с 2 дырками (34 элемента найдены).
Причём находится это решение на первых минутах поиска.
Жалко, что само это решение не выводится программой. Было бы очень интересно посмотреть на решение с 2 дырками!
Написала на скорую руку программу построения по общей формуле, которая приведена чуть выше. Никаких оптимизаций, не использовала отклонения, только общая формула и больше ничего. В программе 15 свободных переменных из 35, перебор огромный, выполнить полностью - надо сутками крутить программу.
Но часа за 2 нашлось решение с 4 дырками:
Код:
0 132 72 180 6 198
118 60 112 156* -30* 172*
156 12 196 16 186 22
166 76 82 46 178* 40
28 202 78 90 160 30
120 106 48 100 88 126

Плохое приближение, есть даже отрицательное число (такой перекос в структуре квадрата). Число 
156 правильное, но повторено.
Однако, на фоне построения пандиагонального квадрата 5-го порядка из последовательных простых чисел (в котором не могли до сих пор сложить даже 4 полных строки) пандиагональные квадраты 6-го порядка выглядят намного успешнее (недаром и первый квадрат уже давно найден).
Как уже сказала, для данного потенциального массива существует решение с 2 дырками.
Это уже очень близкое приближение! И крайнее, - в том смысле, что решения с одной дыркой в этой задаче быть не может: если встанет на место 35-ый элемент, автоматически встанет на место и 36-ой.
Вот такие эксперименты.
И какой поразительный контраст: потенциальные массивы, которые проверялись у меня в последнее время, проверяются за несколько секунд (самое большее - 10 минут). А тут - почти 7 часов! Программа проверки одна и та же, компьютер один и тот же.
-- Вс дек 14, 2014 08:13:20 --Проделала интересный эксперимент.
Очень интересно посмотреть на решение с 2 дырками!
Делаю следующее: расширяю исходный массив, добавляя к нему 14 чисел:
Код:
0 6 12 16 22 28 30 40 42 46 48 60 72 76 78 82 88 90 100 106 112 118 120 126 130 132 142 156 160 162 166 180 186 196 198 202
34 36 54 58 66 94 98 136 148 152 172 178 188 192 
Запускаю программу поиска квадратов, и... квадраты посыпались, как из рога изобилия  
 
 Код:
1:
 188 198  28  16 136  22
  40  48 166 178  90  66
 196  78   6  94  88 126
  36  58 180 152   0 162
  98 172  60  76  82 100
  30  34 148  72 192 112
Time: 2.59 sec
2:
 188 198  28  16 136  22
  30  40 202 100  98 118
  78 120  60  46 112 172
  36  58 186 152   0 156
 180 160   6  82  94  66
  76  12 106 192 148  54
Time: 2.61 sec
3:
 188 198  28  16 136  22
  12 130  94 120 166  66
 142  78  72  76  88 132
  36  58 186 152   0 156
 162  90  60  98   6 172
  48  34 148 126 192  40
Time: 2.62 sec
4:
 188 198  28  16 136  22
  76 100  78 130 132  72
  98 106  66 118  88 112
  36  58 162 152   0 180
 156 120  82  30  40 160
  34   6 172 142 192  42
Time: 2.70 sec
5:
 188 198  28  16 136  22
  34  54 178 142 132  48
 156  66  82  30  94 160
  36  58 162 152   0 180
  98 166  60 118  40 106
  76  46  78 130 186  72
Time: 2.72 sec
6:
 188 198  22  16  46 118
  40  12 196 172 162   6
 178  90  30  88  76 126
  36 148  66 152   0 186
  98 106 132  82 112  58
  48  34 142  78 192  94
Time: 3.53 sec
. . . . . . . . 
За 5 секунд нашлёпалось море квадратов!
Кстати, имеем модели массивов из 36 последовательных простых чисел. И таких шаблонов можно сделать сотни. Только вот найти хотя бы один массив, соответствующий этим шаблонам, никак не получается  
 
 Ах да, теперь надо из этого моря решений выудить решение с 2 дырками.
Можно попробовать уменьшить расширение массива, добавить не 14 чисел, а меньше.