2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4  След.
 
 Параметры
Сообщение08.12.2014, 12:19 
1) Найдите все числа $c$ и $d$, для которых наибольшее значение функции

$y=\left|4\cdot \dfrac{3^x+3^{-x}-2}{3^x+3^{-x}+2}+2(c+2d)\cdot \dfrac{3^x-1}{3^x+1}+2c+d\right|$

на отрезке $[-1;1]$ является наименьшим.

Была такая идея, выделить целые части в дробях:

$y=\left|4\cdot \left(1-\dfrac{4}{3^x+3^{-x}+2}\right)+2(c+2d)\cdot \left(1- \dfrac{2}{3^x+1}\right)+2c+d\right|$

Попробуем найти наибольшее значение функции. Для этого нужно вычитаемые дроби $\dfrac{4}{3^x+3^{-x}+2}$ и $\dfrac{2}{3^x+1}$ минимизировать. Чтобы значения этих дробей было минимально, нужно устремить $x$ к бесконечности. В пределе, получим:

$\lim\limits_{x\to +\infty}\dfrac{4}{3^x+3^{-x}+2}=0$ и $\lim\limits_{x\to +\infty}\dfrac{2}{3^x+1}=0$, тогда:

$\lim\limits_{x\to +\infty}y=|4+2(c+2d)+2c+d|$

В правильном ли направлении думаю?

2) Найти все пары $(a,b)$, для которых система

$\left\{\begin{matrix}
x^2-y^2+a(x+y)=x-y+a\\ 
x^2+y^2+bxy-1=0

\end{matrix}\right.$

имеет не менее 5 решений.

Есть идея разложить на множители

$\left\{\begin{matrix}
(x+y-1)(x-y+a)=0\\ 
x^2+y^2+bxy-1=0

\end{matrix}\right.$

Первое уравнение -- две перпендикулярные прямые, второе уравнение -- какая-то кривая, какая именно -- зависит от $b$.

Хотелось бы графически решить, но пока что не вижу вариантов.

Есть еще вариант поочередно подставлять во второе уравнение системы $y=1-x$ и $y=x+a$, только не очевидно -- зачем.

Подскажите, пожалуйста -- в каком направлении двигаться.

 
 
 
 Re: Параметры
Сообщение08.12.2014, 13:48 
Andrei94 в сообщении #942375 писал(а):
Чтобы значения этих дробей было минимально, нужно устремить $x$ к бесконечности.


Andrei94 в сообщении #942375 писал(а):
Найдите все числа $c$ и $d$, для которых наибольшее значение функции $y=\ldots$ на отрезке $[-1;1]$ является наименьшим.


Не нужно искать минимум, тем более глобальный, тем более неправильно. Нужен максимум на отрезке. Для каждого набора $(c,d)$ получится свой максимум. Попробуйте найти его честно. Из этого множества затем нужно выбрать наименьшее.

 
 
 
 Re: Параметры
Сообщение08.12.2014, 13:55 
Подходящей заменой можно свести функцию в модуле к квадратичной.

 
 
 
 Re: Параметры
Сообщение08.12.2014, 14:00 
2. Подставьте $y=kx+t$ в уравнение
$x^2+y^2+bxy-1=0 $
какое уравнение относительно $x$ получится? Сколько оно может иметь корней?

 
 
 
 Re: Параметры
Сообщение08.12.2014, 14:23 
Cash в сообщении #942409 писал(а):
Andrei94 в сообщении #942375 писал(а):
Чтобы значения этих дробей было минимально, нужно устремить $x$ к бесконечности.


Andrei94 в сообщении #942375 писал(а):
Найдите все числа $c$ и $d$, для которых наибольшее значение функции $y=\ldots$ на отрезке $[-1;1]$ является наименьшим.


Не нужно искать минимум, тем более глобальный, тем более неправильно. Нужен максимум на отрезке. Для каждого набора $(c,d)$ получится свой максимум. Попробуйте найти его честно. Из этого множества затем нужно выбрать наименьшее.


Честно -- это через производную? А оценкой не получится?

 
 
 
 Re: Параметры
Сообщение08.12.2014, 14:31 
Поработайте с выражением
$\frac{3^x+3^{-x}-2}{3^x+3^{-x}+2}$
Упростите его насколько возможно.

 
 
 
 Re: Параметры
Сообщение08.12.2014, 15:14 
Cash в сообщении #942414 писал(а):
2. Подставьте $y=kx+t$ в уравнение
$x^2+y^2+bxy-1=0 $
какое уравнение относительно $x$ получится? Сколько оно может иметь корней?

Квадратное, не более двух. Только у нас же две прямых. Тогда вместе не более чытерех...да?

-- 08.12.2014, 15:18 --

Cash в сообщении #942426 писал(а):
Поработайте с выражением
$\frac{3^x+3^{-x}-2}{3^x+3^{-x}+2}$
Упростите его насколько возможно.


$\dfrac{3^x+3^{-x}-2}{3^x+3^{-x}+2}=\dfrac{\left(3^{\frac{x}{2}}-3^{-\frac{x}{2}}\right)^2}{\left(3^{\frac{x}{2}}+3^{-\frac{x}{2}}\right)^2}$

При $x=0$ это выражение равно нулю, при остальных $x$ оно больше нуля. Это выражение не меняется при замене $x$ на $-x$, потому, если $x$ будет решением, то и $-x$ будет решением.

 
 
 
 Re: Параметры
Сообщение08.12.2014, 15:56 
Andrei94 в сообщении #942442 писал(а):
Квадратное, не более двух

Как правило, да. Но возможны варианты
$ax^2+bx+c=0$
Может ли это уравнение иметь 3 корня?
Andrei94 в сообщении #942442 писал(а):
$\dfrac{3^x+3^{-x}-2}{3^x+3^{-x}+2}=\dfrac{\left(3^{\frac{x}{2}}-3^{-\frac{x}{2}}\right)^2}{\left(3^{\frac{x}{2}}+3^{-\frac{x}{2}}\right)^2}$

Упростили не до конца. Зачем Вам $3^{-x}$?

 
 
 
 Re: Параметры
Сообщение08.12.2014, 16:22 
Аватара пользователя
По второй задаче: исходная система распадается в совокупность двух систем, в каждой из которых первое уравнение 2-й степени, а второе - линейное, а такие системы тривиально решаются и исследуются.

 
 
 
 Re: Параметры
Сообщение08.12.2014, 23:31 
Cash в сообщении #942458 писал(а):
Andrei94 в сообщении #942442 писал(а):
Квадратное, не более двух

Как правило, да. Но возможны варианты
$ax^2+bx+c=0$
Может ли это уравнение иметь 3 корня?
Andrei94 в сообщении #942442 писал(а):
$\dfrac{3^x+3^{-x}-2}{3^x+3^{-x}+2}=\dfrac{\left(3^{\frac{x}{2}}-3^{-\frac{x}{2}}\right)^2}{\left(3^{\frac{x}{2}}+3^{-\frac{x}{2}}\right)^2}$

Упростили не до конца. Зачем Вам $3^{-x}$?

три корня иметь не может.
$\dfrac{3^x+3^{-x}-2}{3^x+3^{-x}+2}=\dfrac{\left(3^{\frac{x}{2}}-3^{-\frac{x}{2}}\right)^2}{\left(3^{\frac{x}{2}}+3^{-\frac{x}{2}}\right)^2}=\dfrac{\left(3^{x}-1\right)^2}{\left(3^{x}+1\right)^2}=\left(\dfrac{3^x+1}{3^x-1}\right)^2$

-- 08.12.2014, 23:33 --

Brukvalub в сообщении #942467 писал(а):
По второй задаче: исходная система распадается в совокупность двух систем, в каждой из которых первое уравнение 2-й степени, а второе - линейное, а такие системы тривиально решаются и исследуются.

Тогда получается, что первая система имеет не более двух решений, вторая -- тоже не более двух, значит совокупность не более 4 решений. Верно?

 
 
 
 Re: Параметры
Сообщение09.12.2014, 08:31 
Andrei94 в сообщении #942740 писал(а):
$\dfrac{3^x+3^{-x}-2}{3^x+3^{-x}+2}=\dfrac{\left(3^{\frac{x}{2}}-3^{-\frac{x}{2}}\right)^2}{\left(3^{\frac{x}{2}}+3^{-\frac{x}{2}}\right)^2}=\dfrac{\left(3^{x}-1\right)^2}{\left(3^{x}+1\right)^2}=\left(\dfrac{3^x+1}{3^x-1}\right)^2$

В последнем равенстве ошибка.
Теперь смотрите сообщение Shadow.
Andrei94 в сообщении #942740 писал(а):
три корня иметь не может.

Ошибаетесь.
Давайте не будем рассматривать абстрактный пример, иногда очень простые вещи трудно заметить.
Распишите второе уравнение в случае $y=1-x$ и $y=x+a$ и посмотрим уже на примере - сколько корней будет при разных параметрах.

 
 
 
 Re: Параметры
Сообщение09.12.2014, 15:37 
$\dfrac{3^x+3^{-x}-2}{3^x+3^{-x}+2}=\dfrac{\left(3^{\frac{x}{2}}-3^{-\frac{x}{2}}\right)^2}{\left(3^{\frac{x}{2}}+3^{-\frac{x}{2}}\right)^2}=\dfrac{\left(3^{x}-1\right)^2}{\left(3^{x}+1\right)^2}=\left(\dfrac{3^x-1}{3^x+1}\right)^2$

-- 09.12.2014, 15:51 --

$y=\left|4\cdot \dfrac{3^x+3^{-x}-2}{3^x+3^{-x}+2}+2(c+2d)\cdot \dfrac{3^x-1}{3^x+1}+2c+d\right|$

Тогда обозначим $t=\dfrac{3^x-1}{3^x+1}$

$y=\left|4\cdot t^2+2(c+2d)\cdot t+2c+d\right|$

Наибольшее значение этой функции на отрезке $[-1;1]$ будет достигаться или в концах отрезка или там, где производная ноль.

$y(1)=|4+2c+4d+2c+d|=|4+4c+5d|$

$y(-1)=|4-2c-4d+2c+d|=|4-3d|$

$t_0=-\dfrac{c+2d}{4}$

А как выяснить -- какое из этих значений больше?

$y(t_0)=\left|\dfrac{(c+2d)^2}{4}-\dfrac{(c+2d)^2}{2}+2c+d\right|=\dfrac{1}{4}\cdot \left|(c+2d)(c+2d-4)\right|$

-- 09.12.2014, 16:01 --

Cash в сообщении #942871 писал(а):
Ошибаетесь.
Давайте не будем рассматривать абстрактный пример, иногда очень простые вещи трудно заметить.
Распишите второе уравнение в случае $y=1-x$ и $y=x+a$ и посмотрим уже на примере - сколько корней будет при разных параметрах.


Ох, точно, при $y=1-x$

$x^2+(1-x)^2+bx(1-x)-1=0$

Группируя, получаем, что:

$x(2-b)(x-1)=0$

При $b=2$ получается бесконечное количество корней.

-- 09.12.2014, 16:02 --

При $y=x+a$ получаем $(2+b)x^2+(2a+ab)x+a^2-1=0$

При $a=\pm 1$ можно проверить отдельно.

При $a=1$ получаем $(2+b)x^2+(2+b)x=0$, тогда при $b=-2$ будет бесчисленное число корней.

При $a=-1$ получаем $(2+b)x^2+(-2-b)x=0$, тогда при $b=-2$ будет бесчисленное число корней.

То есть ответ: При $b=2$ и любом $a$ будет более четырех корней. При $b=-2$ и $a=\pm 1$ будет более четырех корней.

Верно?

 
 
 
 Re: Параметры
Сообщение09.12.2014, 16:27 
Andrei94 в сообщении #942976 писал(а):
$y=\left|4\cdot t^2+2(c+2d)\cdot t+2c+d\right|$
Наибольшее значение этой функции на отрезке $[-1;1]$

А почему вы рассматриваете отрезок $[-1;1]$ ?

Вторая задача-верно.

 
 
 
 Re: Параметры
Сообщение09.12.2014, 21:19 
Cash в сообщении #942998 писал(а):
Andrei94 в сообщении #942976 писал(а):
$y=\left|4\cdot t^2+2(c+2d)\cdot t+2c+d\right|$
Наибольшее значение этой функции на отрезке $[-1;1]$

А почему вы рассматриваете отрезок $[-1;1]$ ?

Вторая задача-верно.


Потому как мне посоветовали так сделать, по-крайней мере, так понял совет:

Cash в сообщении #942409 писал(а):
Не нужно искать минимум, тем более глобальный, тем более неправильно. Нужен максимум на отрезке. Для каждого набора $(c,d)$ получится свой максимум. Попробуйте найти его честно. Из этого множества затем нужно выбрать наименьшее.

 
 
 
 Re: Параметры
Сообщение09.12.2014, 21:37 
Аватара пользователя
На отрезке, да не а том. Ведь теперь у вас другая переменная.

 
 
 [ Сообщений: 55 ]  На страницу 1, 2, 3, 4  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group