2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Примеры зависимых и независимых погрешностей
Сообщение18.10.2014, 23:24 
Когда требуется найти погрешность суммы случайных величин, то в случае, если они независимы, эта величина равна корню квадратному из суммы погрешностей. Если они жестко коррелированы, то либо сумме, либо разности погрешностей. Помогите пожалуйста с примерами по данной теме.

 
 
 
 Re: Примеры зависимых и независимых погрешностей
Сообщение19.10.2014, 04:21 
Аватара пользователя
Что Вы называете "погрешностью"?

 
 
 
 Re: Примеры зависимых и независимых погрешностей
Сообщение19.10.2014, 09:01 
Погрешность $\sigma = \sqrt[]{D}$, где D-дисперсия

 
 
 
 Re: Примеры зависимых и независимых погрешностей
Сообщение19.10.2014, 09:07 
Learner в сообщении #920425 писал(а):
Помогите пожалуйста с примерами по данной теме.

Если это нужно для методички, то в тексте должно быть примерно следующее:

Пример. Рассмотрите любую пару величин соответствующего типа.

 
 
 
 Re: Примеры зависимых и независимых погрешностей
Сообщение19.10.2014, 09:16 
Рассматривал такой пример. Имеется стержень длиной L. Измеряем часть его длины $L_{1}$. Длина оставшейся части $L_{2}$ - случайная величина, зависимая от $L_{1}$ (чем больше $L_{1}$, тем меньше $L_{2}$). Но даже в этом простом примере не все понятно. Если $L_{1}$ и $L_{2}$ измерены с погрешностью $\sigma$, то погрешность величины ($L_{1}+L_{2}$) должна быть равна нулю (коэффициент корреляции $\rho=-1$). Но ведь мы можем измерить общую длину и погрешность конечно будет ненулевая.
Есть еще один пример. Имеется кольцо. Измеряем центральный угол $\alpha$ (в градусах). Смежный с ним угол $\beta=360^{\circ}-\alpha$. Эти углы - зависимые величины. Погрешность от суммы углов равна нулю, так как $360^{\circ}$ - величина определенная без погрешности.

-- 19.10.2014, 11:21 --

ewert, мне это нужно для знакомства с предметом. Интересуют конкретные примеры из метрологии, где зависимость случайных величин используется при анализе результатов измерений. То есть позволит уменьшить результирующую погрешность косвенных измерений (в случае когда при жесткой кореляции погрешность суммы величин будет равна разности погрешностей этих величин).

 
 
 
 Posted automatically
Сообщение19.10.2014, 15:47 
Аватара пользователя
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
Причина переноса: формулы не оформлены $\TeX$ом

Learner
Наберите все формулы и термы $\TeX$ом.
Инструкции по оформлению формул здесь или здесь (или в этом видеоролике).
См. также тему Что такое карантин, и что нужно делать, чтобы там оказаться.
После исправлений сообщите в теме Сообщение в карантине исправлено, и тогда тема будет возвращена.

 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»
Вернул

 
 
 
 Re: Примеры зависимых и независимых погрешностей
Сообщение19.10.2014, 16:35 
Спасибо, Deggial!

 
 
 
 Re: Примеры зависимых и независимых погрешностей
Сообщение19.10.2014, 20:03 
Продолжаю думать над этим. Нужно найти пример функции (из практики) $f=f(a,b)$, где $a$ и $b$- зависимые случайные величины с коэффициентом корреляции $\rho=-1$ (1-й случай) и $\rho=1$ (2-й случай). Тогда при нахождении погрешности величины f: $\sigma_{f}=\frac{\partial f}{\partial a}\sigma_{a}-\frac{\partial f}{\partial b}\sigma_{b}$ ($\rho=-1$) или $\sigma_{f}=\frac{\partial f}{\partial a}\sigma_{a}+\frac{\partial f}{\partial b}\sigma_{b}$ ($\rho=1$). Если $\rho=0$ (величины $a$ и $b$ - независимые), то получается привычная формула:
$\sigma_{f}=\sqrt{(\frac{\partial f}{\partial a}\sigma_{a})^2+(\frac{\partial f}{\partial b}\sigma_{b})^2}

 
 
 
 Re: Примеры зависимых и независимых погрешностей
Сообщение19.10.2014, 22:19 
Рассмотрим такой пример. Имеется прямоугольная пластина со сторонами $a$ и $b$. Каждая из сторон измеряется с соответствующей погрешностью: $\sigma_{a}$ и $\sigma_{b}$. Пусть измеренные линейкой значения $a=10,0$ мм и $b=20,0$ мм. Погрешности измерения $\sigma_{a}=  \sigma_{b}=0,1$ мм. В случае, если величины $a$и $b$ независимы, погрешность определения периметра равна $\sigma_{p}=\sqrt{(\sigma_{a})^2+(\sigma_{b})^2}$. В случае, если зависимы (например, известно, что одна из сторон вдвое больше другой, коэффициент корреляции равен 1) и при увеличении одной из сторон увеличивается другая, то $\sigma_{p}=2\sigma_{a}}$. Если при увеличении одной из сторон другая уменьшается по линейному закону (коэффициент корреляции равен -1), то $\sigma_{p}=0$. Верны ли мои рассуждения?

 
 
 
 Re: Примеры зависимых и независимых погрешностей
Сообщение20.10.2014, 05:21 
Аватара пользователя
Правильно, можно и в самом деле получить нулевую погрешность при суммировании. Вот вам еще один пример. В двух смежных комнатах находятся $N$ человек. В одной - $n$ и во второй $N-n$. Люди постоянно перемещаются из одной комнаты в другую. Если вам удастся одномоментно измерить количество людей в каждой комнате и сложить их, то величина $N$ будет определена точно.

 
 
 
 Re: Примеры зависимых и независимых погрешностей
Сообщение20.10.2014, 10:24 
Learner в сообщении #920768 писал(а):
Если $L_{1}$ и $L_{2}$ измерены с погрешностью $\sigma$, то погрешность величины ($L_{1}+L_{2}$) должна быть равна нулю (коэффициент корреляции $\rho=-1$).

коэффициент корреляции между чем и чем?
если между измерениями, то он не равен $-1$
Learner в сообщении #921053 писал(а):
В случае, если зависимы (например, известно, что одна из сторон вдвое больше другой, коэффициент корреляции равен 1)

это не корреляция.
корреляция - это когда одна случайная величина похожа на другую. а длина стороны - это не случайная величина, случайная - измерение. отклонение не зависит от того в каком порядке измеряются стороны пластины.

 
 
 
 Re: Примеры зависимых и независимых погрешностей
Сообщение20.10.2014, 17:33 
Коэффициент корреляции между величинами $L_{1}$ и $L_{2}$. Если одна больше на величину $\delta x$, то вторая меньше на ту же величину.
Upgrade, если знаете примеры, поделитесь пожалуйста!
Еще сегодня вычитал, что зависимые случайные величины - те, которые вызваны одной и то же природой.

-- 20.10.2014, 19:42 --

Upgrade, имеется пластина, изготовленная таким образом, что у нее одна сторона в 2 раза больше другой. Затем каждая из этих сторон измеряется линейкой. И истинное значение длины лежит в некотором интервале, погрешность распределена по равномерному видимо закону.

 
 
 
 Re: Примеры зависимых и независимых погрешностей
Сообщение20.10.2014, 17:44 
измеряем железной линейкой, которая по мере прогрева/охлаждения меняет свои размеры - будет корреляция между измеренными величинами варианта $1$ линейка холодная (теплая) и варианта $2$ линейка теплая (холодная)

-- 20.10.2014, 17:58 --

Learner в сообщении #921257 писал(а):
Если одна больше на величину $\delta x$, то вторая меньше на ту же величину.

не обязательно

 
 
 
 Re: Примеры зависимых и независимых погрешностей
Сообщение20.10.2014, 18:13 
upgrade в сообщении #921262 писал(а):
измеряем железной линейкой, которая по мере прогрева/охлаждения меняет свои размеры - будет корреляция между измеренными величинами варианта $1$ линейка холодная (теплая) и варианта $2$ линейка теплая (холодная)

И если холодной линейкой измерить одну сторону, а теплой - другую, то погрешность суммы сторон равна сумме погрешностей?
Но теплая линейка даст неверный результат - практического смысла наверное нет в таких измерениях.

-- 20.10.2014, 20:23 --

Сегодня нашел учебник по метрологии. Автора завтра напишу. Углубленный курс. И даже несмотря на это там всего полстраницы про зависимые случайные величины (про корреляцию случайных величин) Написано в частности что в таком случае погрешности складываются (или вычитаются). И написано, что погрешности коррелируют, если вызваны одной природой. И все(

 
 
 
 Re: Примеры зависимых и независимых погрешностей
Сообщение20.10.2014, 18:28 
Learner в сообщении #921280 писал(а):
а теплой - другую, то погрешность суммы сторон равна сумме погрешностей?

погрешности да, а дисперсия нет, т.к. нелинейна

-- 20.10.2014, 18:31 --

Learner в сообщении #921280 писал(а):
то погрешность суммы сторон равна сумме погрешностей?

да

-- 20.10.2014, 18:34 --

Learner в сообщении #920766 писал(а):
Погрешность $\sigma = \sqrt[]{D}$, где D-дисперсия

погрешность - это отклонение в момент измерения.
например, измерили кирпич, который в длину $20$ см, линейка первый раз показала $20,1$ см
во второй $19,9$ см погрешности сложились $1-1=0$ получилось $0$ погрешности.

 
 
 [ Сообщений: 23 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group