2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 Софизм о том, что все лошади одной масти.
Сообщение23.09.2014, 12:10 
Здравствуйте, великие математики. Есть такая задача из книги "Конкретная математика" за авторством Д. Кнута и двух других бородатых мужиков:
Изображение

Помогите понять. Я вообще, по-видимому, не понимаю условие адекватно. Почему мы берем, что n-1 лошадей одной масти? В этому случае нужно доказать что и лошадь n той же масти что и n-1 лошадей? И как это возможно? Дальнейшие рассуждения о том, чтобы взять от 2 до n лошадей как индуктивное предположение, это вообще к чему? А почему лошади с 2 до n-2 не могут быть НЕ одной масти? Я не то, чтобы ошибку не могу найти в индуктивном доказательстве, я понять вообще не могу, что к чему?)

Спасибо.

 
 
 
 Re: Софизм о том, что все лошади одной масти.
Сообщение23.09.2014, 12:20 
хныыы...., ну что за темы пошли
аффтар играет на смене квантора, явно не сформулированного.

bayah в сообщении #910882 писал(а):
А почему лошади с 2 до n-2 не могут быть НЕ одной масти?
конечно могут

 
 
 
 Re: Софизм о том, что все лошади одной масти.
Сообщение23.09.2014, 12:29 
Sonic86 в сообщении #910886 писал(а):
хныыы...., ну что за темы пошли
аффтар играет на смене квантора, явно не сформулированного.

bayah в сообщении #910882 писал(а):
А почему лошади с 2 до n-2 не могут быть НЕ одной масти?
конечно могут


А можно поподробнее пожалуйста? Как для дурака)

 
 
 
 Re: Софизм о том, что все лошади одной масти.
Сообщение23.09.2014, 12:29 
bayah, если любые две лошади в табуне одной масти, то все лошади одной масти.

Я - один человек и римский папа - один человек, означает ли это, что я и римский папа - один человек?

 
 
 
 Re: Софизм о том, что все лошади одной масти.
Сообщение23.09.2014, 12:56 
bayah в сообщении #910891 писал(а):
А можно поподробнее пожалуйста? Как для дурака)
Надо различать высказывания "Некоторые $k$ лошадей имеют одну масть" и "Любые $k$ лошадей имеют одну масть".

 
 
 
 Re: Софизм о том, что все лошади одной масти.
Сообщение23.09.2014, 13:44 
Так там и доказывается утверждение, что любые $n$ лошадей имеют одну масть. Просто индуктивный переход по понятным причинам не работает при $n=2$.

 
 
 
 Re: Софизм о том, что все лошади одной масти.
Сообщение23.09.2014, 14:04 
Sender в сообщении #910913 писал(а):
Так там и доказывается утверждение, что любые $n$ лошадей имеют одну масть. Просто индуктивный переход по понятным причинам не работает при $n=2$.
А, ну да.

 
 
 
 Re: Софизм о том, что все лошади одной масти.
Сообщение23.09.2014, 16:33 
Аватара пользователя
bayah в сообщении #910882 писал(а):
и двух других бородатых мужиков
Это даже может показаться удивительным, но соавторы Дональда Кнута (как и он сам) бород не носят ;-)

 
 
 
 Re: Софизм о том, что все лошади одной масти.
Сообщение23.09.2014, 23:18 
Sender в сообщении #910913 писал(а):
Так там и доказывается утверждение, что любые $n$ лошадей имеют одну масть. Просто индуктивный переход по понятным причинам не работает при $n=2$.

А почему для случая 2 не работает, и почему для более 2 работает?

Aritaborian в сообщении #910990 писал(а):
bayah в сообщении #910882 писал(а):
и двух других бородатых мужиков
Это даже может показаться удивительным, но соавторы Дональда Кнута (как и он сам) бород не носят ;-)

Это матафорические бороды)

 
 
 
 Re: Софизм о том, что все лошади одной масти.
Сообщение23.09.2014, 23:26 
bayah в сообщении #911211 писал(а):
А почему для случая 2 не работает, и почему для более 2 работает?
Сами сравните:

Переход от 1 к 2: Если любая одна лошадь совпадает с собой по масти, то любая пара лошадей совпадает по масти. Не обязательно. Ничто не мешает двум лошадям быть разных мастей — предположение индукции никак не препятствует этому.

Переход от 2 к 3: Если любая пара лошадей совпадает по масти, то любая тройка лошадей совпадает по масти. Тут всё верно: возьмите любую лошадь — она той же масти, что и каждая из оставшихся по предположению, и, значит, масть на всех лошадей здесь одна.

 
 
 
 Re: Софизм о том, что все лошади одной масти.
Сообщение24.09.2014, 00:24 
arseniiv в сообщении #911218 писал(а):

Переход от 2 к 3: Если любая пара лошадей совпадает по масти, то любая тройка лошадей совпадает по масти. Тут всё верно: возьмите любую лошадь — она той же масти, что и каждая из оставшихся по предположению, и, значит, масть на всех лошадей здесь одна.


То есть любая пара имеется ввиду, что (1,2), (2,3), (3,1) одной масти? Но это же равносильно тому, что все лошади одной масти? Я так понимал, что любая пара это только одна какая-то пара одной масти и естественно из этого не следует что третья лошадь будет той же масти что первые две. А иначе какой смысл предполагать полностью то что нужно доказать?

 
 
 
 Re: Софизм о том, что все лошади одной масти.
Сообщение24.09.2014, 01:20 
bayah в сообщении #911257 писал(а):
А иначе какой смысл предполагать полностью то что нужно доказать?
Так не полностью же. В общем случае предположение индукции не такое же сильное, как и то, что надо доказать. Да и здесь только предположение о 2-х и более лошадях так же сильно, а вот для одной — как раз совершенно слабое, потому что оно выполняется вообще всегда — что бы мы ни понимали под мастями и лошадьми.

-- Ср сен 24, 2014 04:22:03 --

Лучше рассмотрите побольше разных примеров доказательства по индукции — ну и если что-то будет снова не так, то, конечно же, спрашивайте!

 
 
 
 Re: Софизм о том, что все лошади одной масти.
Сообщение24.09.2014, 13:51 
arseniiv в сообщении #911265 писал(а):
bayah в сообщении #911257 писал(а):
А иначе какой смысл предполагать полностью то что нужно доказать?
Так не полностью же.

Почему не полностью? Если мы говорим, что любая пара лошадей одной масти, то это уже означает что все лошади одной масти. Почему в этой задаче обращают внимание на то, что при таком предположении индукция не работает только в случае 2 лошадей и не говорят ничего о том, что такое предположение вообще не верно? Даже если бы индукция выполнялась она бы все равно ничего не доказывала.

-- 24.09.2014, 20:51 --

arseniiv в сообщении #911265 писал(а):
bayah в сообщении #911257 писал(а):
А иначе какой смысл предполагать полностью то что нужно доказать?
Так не полностью же.

Почему не полностью? Если мы говорим, что любая пара лошадей одной масти, то это уже означает что все лошади одной масти. Почему в этой задаче обращают внимание на то, что при таком предположении индукция не работает только в случае 2 лошадей и не говорят ничего о том, что такое предположение вообще не верно? Даже если бы индукция выполнялась она бы все равно ничего не доказывала.

 
 
 
 Re: Софизм о том, что все лошади одной масти.
Сообщение24.09.2014, 13:59 
bayah в сообщении #911386 писал(а):
Если мы говорим, что любая пара лошадей одной масти, то это уже означает что все лошади одной масти.

А доказать сможете?

 
 
 
 Re: Софизм о том, что все лошади одной масти.
Сообщение24.09.2014, 14:04 
Цитата:
Если мы говорим, что любая пара лошадей одной масти, то это уже означает что все лошади одной масти.

Берем пары, где одна лошадь "зафиксирована" ,остальные будут одной с ней масти, значит, все лошади одной масти.

 
 
 [ Сообщений: 35 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group