2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5, 6
 
 Re: ВТФ для соседних кубов
Сообщение04.04.2014, 10:28 
Уважаемый Chudov! На Ваш вопрос: "В каждой очередной семерке его членов второй и пятый кратны 7, остальные - почти все простые (? 169)
Почему?"
Трехчлен $3n^2 + 3n + 1$, всегда составное число кратное 7, если $n =7k+ 1$ $n =7K +5$, где K- натуральное число. Достаточно сравнить трехчлен по модулю 7 при указанных значениях n.

В случае если $n =7K +2$ или $7K +4$ или $7K +6$, то трехчлен будет составным, если $K =19m$, $K =61m$ и $K = 127m$ соответственно, где m - натуральное число.

-- 04.04.2014, 14:26 --

Уважаемый Chudov! Дополнительно:
трехчлен $3n^2 + 3n +1$ очевидно имеет вид 6w + 1, так как

$n(n +1)$ число четное и $w =n(n+ 1)/2$.

В общем виде трехчлен будет составным, если $w = K(6i + 1) +i$, где
K - натуральное число, а $6i +1$ - простое число.

Пример:

Пусть $n = 21$, тогда $w =21(21 +1)/2=231$ и $w = 231 = 12[(6)3 + 1] + 3$, где

$K = 12$ и $i = 3$. Трехчлен составной $3(21^2 +21) + 1=1387 =(19)73$

Что касается чисел вида $6w+ 1$ без относительно к трехчлену, то существует еще одно условие, когда такие числа будут составные, а именно: $w =4 + 5(i_1 + i_2) + 6i_1i_2$,
где $i_1, i_2$ образуют числа (6i_1 +5) и (6I_2 +5) .

 
 
 
 Re: ВТФ для соседних кубов
Сообщение23.04.2014, 13:37 
Запишем:
$y^3+x^3=(y+1)^3$
Разделив $y^3+x^3$
на $(y+1)$, получим частное $y^2-y+1$ и остаток $x^3-1$.
А должно быть частное $(y+1)^2$ и остаток ноль.

 
 
 
 Re: ВТФ для соседних кубов
Сообщение23.04.2014, 13:58 

(Оффтоп)

Уравнение $x=y$ не имеет решений, потому что в право "игрек", а должно быть икс.

 
 
 
 Re: ВТФ для соседних кубов
Сообщение23.04.2014, 14:16 
Lednov в сообщении #853361 писал(а):
Разделив $y^3+x^3$
на $(y+1)$, получим частное $y^2-y+1$ и остаток $x^3-1$.
Докажите.

 
 
 
 Re: ВТФ для соседних кубов
Сообщение23.04.2014, 14:25 
Учтите только, что согласно определения деления с остатком, остаток должен быть обязательно меньше делителя.

 
 
 
 Re: ВТФ для соседних кубов
Сообщение24.04.2014, 12:12 
Многочлен в алгебраическом выражении делится на двучлен также в алгебраическом выражении или без остатка или с остатком. Если есть остаток, то многочлен, как число, не делится на двучлен ,как число, без остатка.
В рассматриваемом случае остаток $(x^3-1)$, как число, может
быть больше делителя $(y+1)$, как числа.
Здесь остаток $(x^3-1)$, как алгебраическое выражение, не делится на двучлен $(y+1)$, как алгебраическое выражение, так как остаток $(x^3-1)$ не содержит $y$.
Такие двучлены, как $(x^3-1)$ и $(y+1)$, называются взаимно простыми. Будучи определенными в числах, они будут взаимно простыми числами не зависимо от соотношения их абсолютных величин

-- 24.04.2014, 13:20 --

nnosipov,
умножте указанное мною частное на делитель, добавте остаток, произведите преобразования и Вы получите исходное делимое.

 
 
 
 Re: ВТФ для соседних кубов
Сообщение24.04.2014, 12:28 
Аватара пользователя
Lednov в сообщении #853816 писал(а):
Такие двучлены, как $(x^3-1)$ и $(y+1)$, называются взаимно простыми. Будучи определенными в числах, они будут взаимно простыми числами не зависимо от соотношения их абсолютных величин
Продемонстрируйте нам это на примере $x=5$, $y=3$.

 
 
 
 Re: ВТФ для соседних кубов
Сообщение24.04.2014, 12:37 
Lednov в сообщении #853816 писал(а):
Такие двучлены, как $(x^3-1)$ и $(y+1)$, называются взаимно простыми. Будучи определенными в числах, они будут взаимно простыми числами не зависимо от соотношения их абсолютных величин
Это Ваши беспочвенные фантазии.
Lednov в сообщении #853816 писал(а):
nnosipov,
умножте указанное мною частное на делитель, добавте остаток, произведите преобразования и Вы получите исходное делимое.
Вы не доказали, что остаток --- это остаток:
Cash в сообщении #853382 писал(а):
согласно определения деления с остатком, остаток должен быть обязательно меньше делителя

Где-то подобный бред я уже комментировал. Опять пресловутый Козий реинкарнировался, что ли?

 
 
 
 Re: ВТФ для соседних кубов
Сообщение24.04.2014, 16:46 
Уважаемый Lednov!
Во - первых: $Y^3 + 1 +X ^3 -1 =(Y + 1)^3$, при делении левой и правой части на $Y + 1$ получим
$Y^2 -Y +1 +(X^3 - 1)/(Y +1) = (Y + 1 )^2$.

Во - вторых: [(X^3 -1), (Y + 1)] = U, где U - такой делитель числа Z = Y + 1, что согласно формуле

Абеля $X + Y =U^3/3$, для варианта 2 случая ВТФ, когда $(Z,3) =3$.

Это следует из трехчлена $X + Y -Z = X + Y -Y-1 =X -1 = UU_1U_2$, где

$U_1^3 = Z-Y =Y + 1-Y = 1$,

$U_2^3 = Z-X$.

Получили, что U является делителем чисел (Y + 1) и (X -1).

 
 
 
 Re: ВТФ для соседних кубов
Сообщение24.04.2014, 17:28 
Аватара пользователя
 !  Lednov заблокирован как клон Vinter

 
 
 [ Сообщений: 85 ]  На страницу Пред.  1, 2, 3, 4, 5, 6


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group