2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Геометрическая вероятность
Сообщение24.03.2014, 21:14 
Здравствуйте, не могли бы помочь?
Есть задача: На единичной окружности ($x^2 + y^2 = 1$) выбирается случайная точка $P$(из равномерного распределения). в единичном круге ($x^2 + y^2 <= 1$) выбирается случайная точка $Q$(также из равномерного). Пусть $R$ - прямоугольник со сторонами, параллельными осям координат и диагональю $PQ$. Какова вероятность того, что весь прямоугольник лежит в круге.
У меня рассуждения такие, возьмем точку $(x,y)$ на четверти окружности $(x > 0,y > 0)$, тогда вероятность того, что весь прямоугольник лежит в круге равна $\frac{4 x y}{\pi}$, дальше как я понимаю нужно воспользоваться формулой полной вероятности, но я знаю формулу только для конечных наборов событий, интуитивно понятно, что нужно проинтегрировать, но как?(в интернете не нашел)

 
 
 
 Re: Геометрическая вероятность
Сообщение25.03.2014, 07:29 
Аватара пользователя
jorki в сообщении #840379 писал(а):
У меня рассуждения такие, возьмем точку (x,y) на четверти окружности(x > 0,y > 0), тогда вероятность того, что весь прямоугольник лежит в круге равна 4xy/Pi, дальше как я понимаю нужно воспользоваться формулой полной вероятности, но я знаю формулу только для конечных наборов событий, интуитивно понятно, что нужно проинтегрировать, но как?(в интернете не нашел)

$x=\cos(\omega)$
$y=\sin(\omega)$
Интегрируйте по $\omega$

 
 
 
 Posted automatically
Сообщение25.03.2014, 08:20 
Аватара пользователя
 i  Тема перемещена из форума «Олимпиадные задачи (М)» в форум «Карантин»
Причина переноса: формулы не оформлены $\TeX$ом

jorki
Наберите все формулы и термы $\TeX$ом.
Инструкции по оформлению формул здесь или здесь (или в этом видеоролике).
После исправлений сообщите в теме Сообщение в карантине исправлено, и тогда тема будет возвращена

 
 
 
 Posted automatically
Сообщение25.03.2014, 13:38 
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»

 
 
 
 Re: Геометрическая вероятность
Сообщение25.03.2014, 13:53 
$\int\limits_{0}^{2 \pi} \frac {4 |\sin w| |\cos w|}{\pi} dw$ интегрируя получаю $\frac{8}{\pi}$, что не так?

 
 
 
 Re: Геометрическая вероятность
Сообщение25.03.2014, 14:03 
Аватара пользователя
jorki в сообщении #840563 писал(а):
$\int\limits_{0}^{2 \pi} \frac {4 |\sin w| |\cos w|}{\pi} dw$ интегрируя получаю $\frac{8}{\pi}$, что не так?
Вместо $dw$ надо писать $\frac{dw}{2\pi}$

 
 
 
 Re: Геометрическая вероятность
Сообщение25.03.2014, 14:08 
ясно, то есть мы берем небольшой элемент дуги ищем вероятность попадания в этот элемент, после умножаем на условную вероятность? спасибо!

 
 
 
 Re: Геометрическая вероятность
Сообщение07.03.2021, 14:57 
Аватара пользователя
Извините, тема старая, но все же не понятно :facepalm: почему $4xy/\pi$? У нас же две точки $P$ и $Q$. Какие имеются в виду $x$ и $y$? Даже рисунок сделал..
Цитата:
Изображение

 
 
 
 Re: Геометрическая вероятность
Сообщение07.03.2021, 15:53 
Аватара пользователя
При заданной точке $P$ точка $Q$ должна лежать в прямоугольнике, вписанном в окружность, с вершиной в точке $P$, стороны которого параллельны координатным осям. Так и получается.

 
 
 
 Re: Геометрическая вероятность
Сообщение07.03.2021, 16:14 
 !  Gyros
Оформляйте формулы по Правилам самостоятельно.

 
 
 
 Re: Геометрическая вероятность
Сообщение08.03.2021, 18:10 
Аватара пользователя
Понял о каком прямоугольнике идет речь. Если $Q$ принадлежит этой прямоугольной области, то прямоугольник с диагональю $PQ$ полностью содержится в круге (пусть это будет событие $A$ ).

(Оффтоп)

Изображение

Теперь мы имеем плотность вероятности $\frac{4xy}{\pi}$. Надо взять двойной интеграл по этой области (как будто мы ищем массу этой прямоугольной пластинки с плотностью $\frac{4xy}{\pi}$ ).
Т.е. $P(A)=\iint\limits_{}^{}\frac{4xy}{\pi} dxdy$.
Вот тут два момента не ясны:
1) модули у $\sin(\omega)$ и $\cos(\omega)$ как-то нелогично появляются (ну типа чтобы ноль не получить);
2) почему надо делить на $2\pi$, исходя из чего (как будто подгоняем к ответу)?
Надо в этом двойном интеграле обязательно переходить к полярной системе координат, т.к. в декартовой мы проинтегрировать не сможем, т.к. у нас границы области меняются (не константы).

Потом, топикстартер писал:
Цитата:
то есть мы берем небольшой элемент дуги ищем вероятность попадания в этот элемент, после умножаем на условную вероятность?

из чего мне кажется что он не понял решения (откуда тут условная вероятность?)

 
 
 
 Re: Геометрическая вероятность
Сообщение08.03.2021, 19:12 
Аватара пользователя
Gyros в сообщении #1508349 писал(а):
модули у $\sin(\omega)$ и $\cos(\omega)$ как-то нелогично появляются (ну типа чтобы ноль не получить)
Точка $P$ же не обязательно с положительными координатами, она может быть на месте того, что у Вас обозначено $K$ или $M$. Тогда, чтобы найти (положительную) площадь прямоугольника, надо брать какую-то из координат с обратным знаком, так и выходит модуль.
Gyros в сообщении #1508349 писал(а):
почему надо делить на $2\pi$, исходя из чего (как будто подгоняем к ответу)?
Потому что берем интеграл по углу $dw$, а полный угол $2\pi$. Надо делить на длину отрезка, чтобы получить плотность равномерного распределения.
Gyros в сообщении #1508349 писал(а):
откуда тут условная вероятность?)
В том смысле, что вероятность попадания $Q$ в прямоугольник берется при условии, что $P$ известна (строго говоря, принадлежит малому элементу дуги).

 
 
 
 Re: Геометрическая вероятность
Сообщение09.03.2021, 16:36 
Аватара пользователя
А как это облечь в формулу полной вероятности?
Пусть $A$ - событие, что точка $Q$ попадает в прямоугольную область;
событие $B$ - точка $P$ лежит на окружности.
Тогда по формуле полной вероятности $P(AB)=P(A|B)\cdot P(B)$, где
$P(A|B)=\frac{4 \cdot |x| \cdot |y|}{\pi}$,
$P(B)=\frac{d\omega}{2\pi}$.
Далее интегрируем это произведение по прямоугольной области.
Правильно?

 
 
 
 Re: Геометрическая вероятность
Сообщение09.03.2021, 16:58 
Аватара пользователя
Во-первых, $B$ - не просто что лежит на окружности, а что попадает в конкретную малую дугу $dw$ (дифференциал дуги). Во-вторых, формула полной вероятности не так пишется. Обычно она в виде суммы, но здесь сумма переходит в интеграл.

 
 
 
 Re: Геометрическая вероятность
Сообщение10.03.2021, 10:01 
Аватара пользователя
То есть искомая вероятность равна:

$P(AB)=\sum\limits_{i=1}^{n}P(AB_i) = \sum\limits_{i=1}^{n}P(A|B_i)\cdot P(B_i) =\lim\limits_{\max\Delta\omega_i\to 0}^{} \sum\limits_{i=1}^{n} \frac{4 \cdot |\sin \omega| \cdot |\cos \omega |}{\pi}  \frac{\Delta\omega_i}{2\pi}=\int\limits_{0}^{2\pi} \frac{4 \cdot |\sin \omega| \cdot |\cos \omega |}{\pi} \cdot \frac{d \omega}{2\pi}=\frac{4}{\pi^2}$

где $B_i$ - событие, что точка P лежит на элементе дуги $\Delta\omega_i$,
$A$ - событие, что точка $Q$ попадает в прямоугольную область;
Корректно?

 
 
 [ Сообщений: 16 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group