2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3
 
 Re: Делитель нуля и обратный элемент
Сообщение29.09.2013, 19:39 
Someone в сообщении #769112 писал(а):
Всё-таки для произвольного кольца с единицей (не коммутативного и не ассоциативного) это утверждение — что обратимый элемент не является делителем нуля — верно или нет?

Простите, я не могу самостоятельно ответить на этот вопрос, но в пособии, которое я сейчас читаю (лекции из Сети), так и написано, что "для произвольного". Хотя, конечно, я уже увидел пример от Xaositect. Но в принципе, получается, что без уточнения об ассоциативности условие в принципе не совсем корректно?

VAL
Спасибо за подробный ответ!

 
 
 
 Re: Делитель нуля и обратный элемент
Сообщение29.09.2013, 20:05 
Аватара пользователя
Наверное, все-таки кольцо "по умолчанию" ассоциативно?

 
 
 
 Re: Делитель нуля и обратный элемент
Сообщение29.09.2013, 20:31 
Аватара пользователя
VAL в сообщении #769115 писал(а):
Как правило ассоциативность включают в аксиомы кольца.
Ну, значит, мне повезло попасть в необычную часть: у нас А.Г.Курош ассоциативность не включал.

Manticore в сообщении #769131 писал(а):
Простите, я не могу самостоятельно ответить на этот вопрос, но в пособии, которое я сейчас читаю (лекции из Сети), так и написано, что "для произвольного". Хотя, конечно, я уже увидел пример от Xaositect. Но в принципе, получается, что без уточнения об ассоциативности условие в принципе не совсем корректно?
Если в пособии определение кольца включает ассоциативность умножения, то задача сформулирована корректно. Проблема возникла из-за того, что я привык как раз к такому определению кольца, которое ни коммутативности, ни ассоциативности не предполагает.

Xaositect в сообщении #769118 писал(а):
Нет, напр. седенионы
.
Спасибо. Так и чувствовал, что без ассоциативности должно быть неверно.

 
 
 [ Сообщений: 33 ]  На страницу Пред.  1, 2, 3


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group