Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия, Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
парадокс в том, что уравнение просят решить методом понижения порядка, то есть оно все же должно разделяться по переменным. ну или опечака где-то в условии(
randy, понижение порядка и разделение переменных — разные преобразования же. Понижением порядка вы приведёте уравнение от к уравнению от . . Получится . Не помню, зачем это и что это (или помню, но не скажу).
UPD. Ага, вот уже и так сказали, что это разные вещи!
randy
Re: Метод понижения порядка
02.06.2013, 22:22
Последний раз редактировалось randy 02.06.2013, 22:27, всего редактировалось 1 раз.
как тогда по обычному искать частное решение, если общее вот такое?
парадокс в том, что уравнение просят решить методом понижения порядка, то есть оно все же должно разделяться по переменным. ну или опечака где-то в условии(
Получится .
тут ошибка
Ms-dos4
Re: Метод понижения порядка
02.06.2013, 23:39
Последний раз редактировалось Ms-dos4 02.06.2013, 23:40, всего редактировалось 3 раз(а).
randy Я же вам уже полностью расписал решение выше. Только я понижал порядок выделением полного дифференциала в ОЛДУ, а не заменой. И там же я показал, как искать частное решение НЛДУ.