2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.
 
 Re: Разность соседних кубов и треугольные числа
Сообщение07.10.2012, 18:30 
Вопрос по существу
Дано: $(y+1)^3-y^3=z^3$
Имеем: $(y+1)^3-y^3=1+6yK$
$z^3=z+(z-1)z(z+1)$
Вопрос: как преобразовать правую часть одного уравнения в правую часть другого уравнения по форме?
Здесь: $y$ не кратно $
3$, $K$ - целое число.

 
 
 
 Re: Разность соседних кубов и треугольные числа
Сообщение07.10.2012, 18:58 
Что-то я вообще не могу подобрать a и b, чтобы выполнялись известные условия, кроме случая, когда $a=b$...
Имеется ввиду вот это

$(a+b)|a^3$
$(a+b)|b^3$

 
 
 
 Re: Разность соседних кубов и треугольные числа
Сообщение07.10.2012, 19:21 
alexo2 в сообщении #628038 писал(а):
Оппа! Есть подозрение, что выполнимость
$(a+b)|a^3$
$(a+b)|b^3$
влечет за собой наличие общего делителя у $a$ и $b$,
Так и есть: если бы числа $a$ и $b$ были взаимно просты, то $a^3$ и $a+b$ также были бы взаимно просты, а значит, из делимости $a^3$ на $a+b$ следовало бы равенство $a+b=1$, что невозможно.
alexo2 в сообщении #628038 писал(а):
а это существенно меняет ситуацию...
Почему?
alexo2 в сообщении #628063 писал(а):
Что-то я вообще не могу подобрать a и b, чтобы выполнялись известные условия, кроме случая, когда $a=b$...
Воспользуйтесь компьютером --- пусть он ищет.

 
 
 
 Re: Разность соседних кубов и треугольные числа
Сообщение07.10.2012, 20:45 
Да.. Решений много..
Необходимо анализировать совместно с основным уравнением.

 
 
 
 Re: Разность соседних кубов и треугольные числа
Сообщение07.10.2012, 22:18 
dalmat в сообщении #628054 писал(а):
Имеем: $(y+1)^3-y^3=1+6yK$
$z^3=z+(z-1)z(z+1)$


Уважаемый dalmat! Если вы имели ввиду эти 2 уравнения, то для второго имеем в правой части:
$(z-1)z(z+1)$- три последовательных числа, одно из них четное, а другое кратно 3, тогда;
$z^3=z+(z-1)z(z+1)=z+6t$, над тем, что из себя представляет $t$ поразмышляйте сами.
И далее: $z+6t=1+6yK$. О таком преобразовании вы спрашивали?

-- Вс окт 07, 2012 23:19:33 --


 
 
 
 Re: Разность соседних кубов и треугольные числа
Сообщение08.10.2012, 00:14 
nnosipov в сообщении #627887 писал(а):
... А правду узнать Вам разве не хочется?


Всё... - узнал правду и ряды ферматиков уменьшились ещё на одного человека :-(
Дело в том, что треугольные числа, на "чудесные" (тобишь накладывающие какие-то неизвестные дополнительные условия) свойства которых я надеялся, ничего нового не дали - преобразование исходного выражения без использования свойств треугольных чисел приводит ровно к такому же результату:
$(6n)^3=18(m-n)(6m+6n+1)$
Есть, правда слабая надежда, что найденный общий делитель можно все равно как-то использовать в доказательстве, но это, как говорится "совсем другая история"...
Уважаемый nnosipov, Вам большое спасибо, что вольно или невольно заставили меня "копнуть глубже" - а то я так бы и мнил себя "нашедшим элементарное доказательство"...
P.S. Тему я бы оставил (хоть и не мне решать) - все-таки во многом она поучительна...

 
 
 
 Re: Разность соседних кубов и треугольные числа
Сообщение08.10.2012, 03:10 
alexo2 в сообщении #628194 писал(а):
Уважаемый nnosipov, Вам большое спасибо, что вольно или невольно заставили меня "копнуть глубже" ...
Спасибо за спасибо. На моём месте так поступил бы каждый :-)
alexo2 в сообщении #628194 писал(а):
P.S. Тему я бы оставил (хоть и не мне решать) - все-таки во многом она поучительна...
Это, знаете ли, нужно сильно правила нарушить, чтобы тему удалили или закрыли. А мы здесь занимались вполне разумными вещами --- разбирались, что к чему. Всё ок.

 
 
 
 Re: Разность соседних кубов и треугольные числа
Сообщение08.10.2012, 15:52 
И, чтобы довести тему до логического завершения:

Если $6k+1|p^3$,
то
$6k+1|p$.
Для утверждения
$(6n)^3=18(m-n)(6m+6n+1)$ это означает, что
$6m+6n+1|6n$,
что невозможно…

 
 
 
 Re: Разность соседних кубов и треугольные числа
Сообщение08.10.2012, 16:00 
alexo2 в сообщении #628360 писал(а):
Если $6k+1|p^3$,
то
$6k+1|p$.
Да нет, с чего бы это.

 
 
 
 Re: Разность соседних кубов и треугольные числа
Сообщение08.10.2012, 16:03 
nnosipov в сообщении #628365 писал(а):
alexo2 в сообщении #628360 писал(а):
Если $6k+1|p^3$,
то
$6k+1|p$.
Да нет, с чего бы это.


"Очень сильно хочется... :-) "
А это не так?

 
 
 
 Re: Разность соседних кубов и треугольные числа
Сообщение08.10.2012, 16:16 
alexo2 в сообщении #628367 писал(а):
А это не так?
Контрпримеров полно.

 
 
 
 Re: Разность соседних кубов и треугольные числа
Сообщение08.10.2012, 16:26 
nnosipov в [url=http://dxdy.ru/post628371.html#p628371] писал(а):
Контрпримеров полно.

Жалко.. Но больше гадать не буду (я тоже подозревал пробел именно в этом месте) - если найду - выложу в чем сам буду "железобетонно уверен"...

 
 
 
 Re: Разность соседних кубов и треугольные числа
Сообщение09.10.2012, 13:39 
Аватара пользователя
alexo2
Очень сильно рекомендую бросить это дело. Мой жутко богатый опыт показывает, что даже вполне вменяемых ферматиков (к каковым Вы, без сомнения, относитесь) длительное занятие ВТФ доводит до потери вменяемости.

 
 
 
 Re: Разность соседних кубов и треугольные числа
Сообщение09.10.2012, 14:22 
shwedka в сообщении #628755 писал(а):
alexo2
Очень сильно рекомендую бросить это дело. Мой жутко богатый опыт показывает, что даже вполне вменяемых ферматиков (к каковым Вы, без сомнения, относитесь) длительное занятие ВТФ доводит до потери вменяемости.


Не знаю, как другим, но мне ВТФ помогла в непростой период жизни - надо было отвлечься на некоторое время на что-то в плане "мыслительного процесса". В принципе, это могла быть и не ВТФ, а что-то другое. Но вот подвернулось именно она. Тот период закончился, а вот, поди ж ты - интерес остался.
Прекрасно понимаю, что с вероятностью 0,000000001 (если не меньше), можно надеяться на успех элементарного метода, но, во-первых, вероятность выше 0, хоть к нему и стремится :-), а во-вторых, может быть отдельные случаи (например, разности соседних кубов) окажутся более "податливыми"...

 
 
 
 Re: Разность соседних кубов и треугольные числа
Сообщение09.10.2012, 14:34 
alexo2 в сообщении #628764 писал(а):
надо было отвлечься на некоторое время на что-то в плане "мыслительного процесса"
Могу порекомендовать для таких случаев решение олимпиадных задач по математике для школьников. Они уж точно имеют элементарное решение, но найти его бывает иногда очень трудно, так что мыслительный процесс будет обеспечен. Найти такие задачи очень легко --- достаточно заглянуть в олимпиадный раздел.

 
 
 [ Сообщений: 98 ]  На страницу Пред.  1, 2, 3, 4, 5, 6, 7  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group