2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: Посоветуйте пожалуйста сложный учебник по планиметрии
Сообщение16.04.2012, 16:33 
Munin писал(а):
Рациональная параметризация кривых второго порядка - это что за зверь?
Ну типа возьмите эллипс $x=a\cos t$, $y=b\sin t$, и перейдите к $v=\tg\frac t2$. Будет рациональное $x(v),\:y(v)$.

 
 
 
 Re: Посоветуйте пожалуйста сложный учебник по планиметрии
Сообщение16.04.2012, 21:52 
Аватара пользователя
nnosipov в сообщении #560694 писал(а):
Это идёт от Диофанта (метод секущих) и действительно просто, школьники это понимают.

Я не спросил, просто ли это, я спросил, что это. Сильно трудно ответить?

Алексей К.
Спасибо. Не знал, что это можно так мудрёно и туманно назвать. А иррациональные, дробно-рациональные параметризации бывают?

 
 
 
 Re: Посоветуйте пожалуйста сложный учебник по планиметрии
Сообщение16.04.2012, 23:05 
Munin в сообщении #560838 писал(а):
Спасибо. Не знал, что это можно так мудрёно и туманно назвать.

Это совершенно стандартная терминология для выражения бирациональной эквивалентности между нашей кривой и прямой. Рациональная параметризация окружности, к примеру, где параметром является тангенс, моментально дает описание всех пифагоровых троек и объясняет удивительные тригонометрические формулы с так называемым «тангенсом половинного угла».

-- 17.04.2012, 00:06 --

nnosipov в сообщении #560610 писал(а):
Вас действительно заставляли заучивать тригонометрические тождества? И не рассказали при этом про комплексные числа? В нормальных школах этого не делают.

Заставляли заучивать, да, и про комплексные числа я узнал не в школе, а из других источников. Это была хоть и физико-математическая школа, но не в Москве/Петербурге, поэтому увы.

 
 
 
 Re: Посоветуйте пожалуйста сложный учебник по планиметрии
Сообщение16.04.2012, 23:07 
Munin в сообщении #560838 писал(а):
...дробно-рациональные параметризации бывают?


Ну уж нет,
поле частных поля совпадает с исходным)))

-- Пн апр 16, 2012 23:10:43 --

apriv в сообщении #560608 писал(а):
...вспомнить страшно. К примеру, бессмысленное заучивание тонны тригонометрических формул...


Этого ни в нормальных школах никогда не было, ни в ненормальных
Это в алгебре изучают сейчас

 
 
 
 Re: Посоветуйте пожалуйста сложный учебник по планиметрии
Сообщение16.04.2012, 23:17 
mihailm в сообщении #560859 писал(а):
Этого ни в нормальных школах никогда не было, ни в ненормальных
Это в алгебре изучают сейчас

Так не было, или было в алгебре? Ну, «построения циркулем и линейкой» и решения задач на треугольники не сильно осмысленнее заучивания тонны формул.

 
 
 
 Re: Посоветуйте пожалуйста сложный учебник по планиметрии
Сообщение17.04.2012, 03:56 
Аватара пользователя
apriv в сообщении #560858 писал(а):
Это совершенно стандартная терминология для выражения бирациональной эквивалентности между нашей кривой и прямой.

Я, увы, не знаю также, и что такое "бирациональная эквивалентность". И вы единственный, кого я здесь вижу, кто пытается назвать знакомые мне элементарные вещи незнакомыми мне терминами.

apriv в сообщении #560861 писал(а):
Ну, «построения циркулем и линейкой» и решения задач на треугольники не сильно осмысленнее заучивания тонны формул.

Они крайне осмысленны. Они подводят к представлениям об аксиоматическом построении теории и о минимальности списка достаточных условий для логического вывода. Школьники-то всего этого не знают. Такое впечатление, что вы понятия не имеете о том, что такое научить с нуля элементарным вещам. Вообще, задачи, в отличие от заучивания, не бывают бессмысленными почти вообще никогда.

 
 
 
 Re: Посоветуйте пожалуйста сложный учебник по планиметрии
Сообщение17.04.2012, 06:20 
Munin в сообщении #560838 писал(а):
Сильно трудно ответить?
Я подумал, что Вы знаете, что такое метод секущих. Ответить более подробно у меня не было времени --- занятия надо было вести. А термин "рациональная параметризация" довольно распространён. Было бы более непонятно сказать "кривая рода ноль" (про кривую, допускающую рациональную параметризацию). Кстати, кривые рода 1 (эллиптические кривые) допускают параметризацию в эллиптических функциях (это о том, какие ещё параметризации бывают).

 
 
 
 Re: Посоветуйте пожалуйста сложный учебник по планиметрии
Сообщение17.04.2012, 11:01 
Munin в сообщении #560888 писал(а):
Я, увы, не знаю также, и что такое "бирациональная эквивалентность".

Есть кривая $C_F=\{(x_1,\ldots,x_n)\mid F(x_1,\ldots,x_n)=0\}$, кривая $C_G=\{(x_1,\ldots,x_n)\mid G(x_1,\ldots,x_n)=0\}$ ($F,G$ — многочлены). Берем $n$ рациональных функций $T_i(x_1,\ldots,x_n)=\frac{f_i(x_1,\ldots,x_n)}{g_i(x_1,\ldots,x_n)}$ ($f_i,g_i$ — многочлены), составляем из них рациональное отображение $T\colon C_F\to C_G$, $T(x_1,\ldots,x_n)=(T_1(x_1,\ldots,x_n),\ldots,T_n(x_1,\ldots,x_n))$. Если оно определено "почти всюду" на $C_F$, у него есть обратное, определенное "почти всюду" на $C_G$ — то оно называется "бирациональным изоморфизмом".

 
 
 
 Re: Посоветуйте пожалуйста сложный учебник по планиметрии
Сообщение17.04.2012, 11:15 
Аватара пользователя
nnosipov в сообщении #560897 писал(а):
А термин "рациональная параметризация" довольно распространён.

Хорошо. Верю. Скажите, в какой области математики, и как называются учебники. Всегда интересно узнать что-то новое. Потому что мимо меня это прошло полностью.

Joker_vD
Спасибо.

 
 
 
 Re: Посоветуйте пожалуйста сложный учебник по планиметрии
Сообщение17.04.2012, 13:19 
Munin в сообщении #560965 писал(а):
Хорошо. Верю. Скажите, в какой области математики, и как называются учебники.
Область математики --- алгебраическая геометрия. Используется также термин рациональная кривая (т.е. алгебраическая кривая, допускающая рациональную параметризацию). На школьном уровне можно встретить в учебнике Прасолова В.В. "Задачи по алгебре, арифметике и анализу", М.: МЦНМО, 2007 (см. 1-й пункт Дополнения "Рациональная параметризация окружности", стр. 539). В его же задачнике "Задачи по планиметрии", М.: МЦНМО, 2006 на стр. 591 есть п. 7 главы 31 "Рациональная параметризация", в котором приведены примеры задач. Для первого знакомства с предметом можно также рекомендовать брошюру Острика В.В. и Цфасмана М.А. "Алгебраическая геометрия и теория чисел: рациональные и эллиптические кривые", М.: МЦНМО, 2001. На не школьном уровне: Шафаревич И.Р. "Основы алгебраической геометрии", М.: МЦНМО, 2007 (см. 1-й параграф главы 1). И ещё одно замечание: в некоторых системах компьютерной алгебры (например, Maple) реализован алгоритм отыскания рациональной параметризации кривой рода 0 (Maple ссылается на статью: M. van Hoeij, "Rational Parametrizations of Algebraic Curves using a Canonical Divisor", 23, p. 209-227, JSC 1997.)

 
 
 
 Re: Посоветуйте пожалуйста сложный учебник по планиметрии
Сообщение17.04.2012, 13:53 
Аватара пользователя
nnosipov в сообщении #561010 писал(а):
Область математики --- алгебраическая геометрия.

А, вот оно что. Давно слышал, никогда не изучал.

Не подскажете, в каких смежных областях математики и в каких приложениях её знание может быть полезным? Хотя бы в общих чертах.

 
 
 
 Re: Посоветуйте пожалуйста сложный учебник по планиметрии
Сообщение17.04.2012, 14:23 
Munin в сообщении #561025 писал(а):
Не подскажете, в каких смежных областях математики и в каких приложениях её знание может быть полезным?
Я здесь не специалист. Но одно приложение можно назвать --- теория чисел и, в частности, эллиптическая криптография, знание основ алгебраической геометрии здесь явно не помешает (эллиптические кривые --- это кривые рода 1). Когда-то мне нужно было решать системы алгебраических уравнений (переопределённые, как правило, и с большим числом неизвестных), и я надеялся, что алгебраическая геометрия мне как-то поможет. Напрасно надеялся ... Помогла скорее компьютерная алгебра. Впрочем, в многомерном комплексном анализе много алгебраической геометрии (многомерные вычеты, интегральные представления и т.п.).

 
 
 
 Re: Посоветуйте пожалуйста сложный учебник по планиметрии
Сообщение17.04.2012, 15:21 
Munin в сообщении #560838 писал(а):
А иррациональные, дробно-рациональные параметризации бывают?
Рациональность уже подразумевает "дробно-": $\frac{P(t)}{Q(t)}$ ( P,Q --- полиномы). Для кривых --- $\left[x(t)=\frac{X(t)}{W(t)},\;y(t)=\frac{Y(t)}{W(t)}\right]$. Обычная альтернатива --- ирра трансцендентные (кривые).
Munin в сообщении #561025 писал(а):
Не подскажете, в каких смежных областях математики и в каких приложениях...
Рациональные и (кусочно-рациональные, типа NURBSов) кривые сильно популярны в Computer-Aided Design (обычно без привязки к высокой науке, алгебраической геометрии). Для геометрического моделирования. Частный случай --- полиномы (кривые Безье) типа недостаточно гибок; добавим знаменатель. Мотивация, видимо, происходит от желания избежать разнообразия базовых функций (обойтись без трансцендентных), более быстрые алгоритмы, более простая формализация (ну типа 3 массива чисел-коэффициентов или набор "контрольных точек с весами" вполне определяет кривую).

 
 
 
 Re: Посоветуйте пожалуйста сложный учебник по планиметрии
Сообщение17.04.2012, 18:32 
Еще могу топикстартеру посоветовать книжку Адамар Ж. Элементарная геометрия, т. 1 Планиметрия. Написано немного старомодным языком, но очень глубоко охватывает курс Планиметрии.
Я, конечно, сильно отстал от математической жизни, но по-моему Уайлз в своем доказательстве большой теоремы Ферма использовал как раз методы алгебраической геометрии

 
 
 
 Re: Посоветуйте пожалуйста сложный учебник по планиметрии
Сообщение17.04.2012, 18:52 
apriv в сообщении #560861 писал(а):
...
Так не было, или было в алгебре?...


Речь в теме вроде за геометрию.
Хотел написать что просто изучают в алгебре, но вспомнил, что когда-то по рассказам тетки был отдельный предмет в школе и назывался он тригонометрия.

 
 
 [ Сообщений: 34 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group