2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 Re: Проблема с рядом Фурье
Сообщение23.10.2011, 00:38 
Аватара пользователя
profrotter в сообщении #495205 писал(а):
Что же там некорректного?
Да просто при этих $n$ интегралы вычисляются по другим формулам, вот и всё.

synphara в сообщении #495208 писал(а):
Дело в том что топикастер путает прямое и обратное преобразование Фурье.
Причём тут вообще интегральное преобразование Фурье, если вопрос про ряд Фурье?

synphara в сообщении #495208 писал(а):
Вы же ему про раздельное вычисление коэффициентов гармоник, как будто это поможет ему их найти.
Разумеется, поможет. Всем помогает.

Mike1, ещё полезное соотношение: $\cos n\pi=(-1)^n=\begin{cases}1\text{, если $n$ чётное,}\\ -1\text{, если $n$ нечётное.}\end{cases}$

 
 
 
 Re: Проблема с рядом Фурье
Сообщение23.10.2011, 00:41 
Аватара пользователя
Someone писал(а):
Да просто при этих интегралы вычисляются по другим формулам, вот и всё.
При всех $n$ интегралы прямого преобразования Фурье одинаковые. Подставляете разные $n$ - получаете коэффциенты, по ним считаете фазу и амплитуду гармоники. Частоту гармоники получаете через $n$.

Иногда вычисление $a_0$ отдельно записывается, хотя в этом нет нужды.

 
 
 
 Re: Проблема с рядом Фурье
Сообщение23.10.2011, 01:07 
Аватара пользователя
Someone в сообщении #495212 писал(а):
profrotter в сообщении #495205 писал(а):
Что же там некорректного?
Да просто при этих $n$ интегралы вычисляются по другим формулам, вот и всё.
:shock: Предлагаю обменяться формулами для вычисления коэффициентов ряда Фурье в тригонометрической форме. Давайте посмотрим на мои (мне думается, что они совпадают с теми, что приведены любом учебнике, если конечно я не ошибся при их записи :mrgreen: ):
$$f(t)=\frac {a_0} {2}+\sum\limits_{n=1}^{+\infty}(a_n\cos(\frac {2\pi n} T t)+b_n\sin(\frac {2\pi n} T t))$$
$$\frac {a_0} 2=\frac 1 T \int\limits_{-\frac T 2}^{-\frac T 2}f(t)dt$$
$$a_n=\frac 2 T \int\limits_{-\frac T 2}^{-\frac T 2}f(t)\cos(\frac {2\pi n} T t)dt$$
$$b_n=\frac 2 T \int\limits_{-\frac T 2}^{-\frac T 2}f(t)\sin(\frac {2\pi n} T t)dt$$
По какой другой формуле вычисляется коэффициент $a_1$ с вашей точки зрения?
Вы так и не разъяснили, что же вы увидели странного в моём совете рассмотреть предел. Как вы думаете, корректно ли рассматривать значение последовательности $z_n=\frac {\sin(n)} {n}$ при $n=0$? Когда с этим вопросом возникнет ясность, вы с лёгкостию обнаружите ошибку в сообщении автора темы:
Mike1 в сообщении #494693 писал(а):
Если взять $n = 1$, то получается ошибка т.к. выражение
$\frac{\cos(\pi\cdot n)+1}{1-n}$ получается равным бесконечности? Или нужно брать $n = 2$ ?
и, я предполагаю, мой совет вам уже не покажется странным. :mrgreen:

 
 
 
 Re: Проблема с рядом Фурье
Сообщение23.10.2011, 02:29 
Аватара пользователя
profrotter в сообщении #495216 писал(а):
Предлагаю обменяться формулами для вычисления коэффициентов ряда Фурье в тригонометрической форме.
Чего ими "обмениваться"? Они у всех одинаковые (возможно, с несущественными нюансами). Ну, например, для функции, заданной на отрезке $[a,b]$, можно так их написать: $$f(x)\sim\frac{a_0}2+\sum_{n=1}^{\infty}\left(a_n\cos\left(\frac{2\pi nx}{b-a}\right)+b_n\sin\left(\frac{2\pi nx}{b-a}\right)\right),\eqno{(1)}$$ $$a_n=\frac 2{b-a}\int\limits_a^bf(x)\cos\left(\frac{2\pi nx}{b-a}\right)dx,\quad n=0,1,2,3,\ldots,\eqno{(2)}$$ $$b_n=\frac 2{b-a}\int\limits_a^bf(x)\sin\left(\frac{2\pi nx}{b-a}\right)dx,\quad n=1,2,3,\ldots.\eqno{(3)}$$
profrotter в сообщении #495216 писал(а):
если конечно я не ошибся при их записи
Ошиблись. В пределах интегрирования.

profrotter в сообщении #495216 писал(а):
По какой другой формуле вычисляется коэффициент $a_1$ с вашей точки зрения?
Я написал, что "интегралы вычисляются по другим формулам", а не "коэффициенты вычисляются по другим формулам". Интегралы в этих двух случаях действительно вычисляются по другим формулам.

profrotter в сообщении #495216 писал(а):
Как вы думаете, корректно ли рассматривать значение последовательности $z_n=\frac {\sin(n)} {n}$ при $n=0$?
Не корректно.

profrotter в сообщении #495216 писал(а):
Mike1 в сообщении #494693 писал(а):
Если взять $n = 1$, то получается ошибка т.к. выражение
$\frac{\cos(\pi\cdot n)+1}{1-n}$ получается равным бесконечности? Или нужно брать $n = 2$ ?
Разумеется, он здесь не прав. Ничего здесь не получается "равным бесконечности", это выражение просто не определено при $n=1$.

profrotter в сообщении #495216 писал(а):
я предполагаю, мой совет вам уже не покажется странным
Какой совет? Воспользоваться правилом Лопиталя? Очень плохой совет. И Вам не советую пользоваться правилом Лопиталя там, где никакого предела нет. Формальное применение правила Лопиталя может дать неправильный результат. Например, в стартовом сообщении коэффициент $b_1$ вычислен неправильно, и никакое "правило Лопиталя" уже не спасёт.

synphara в сообщении #495214 писал(а):
Иногда вычисление $a_0$ отдельно записывается, хотя в этом нет нужды.
Обычно есть. Иногда такая нужда встречается и для других коэффициентов.

 
 
 
 Re: Проблема с рядом Фурье
Сообщение23.10.2011, 10:37 
Аватара пользователя
Someone писал(а):
Обычно есть. Иногда такая нужда встречается и для других коэффициентов.


Если вы подставите $n=0$, $b_0$ обратиться в 0, $a_0$ обратится в ту формулу что у вас обоих записана за $a_0$. Математической разницы нет никакой. А выписывают её отдельно видимо по смыслу. Это так называемая нулевая гармоника которая описывает постоянную составляющую функции. Это этакое колебание без колебания, косинус без частоты. Гармоника с вырожденой частотой. Если бы речь шла о токе это была бы составляющая которую создаёт постоянный ток, а о звуке - это было бы значение атмосферного давления.

-- 23.10.2011, 10:40 --

Someone писал(а):
Я написал, что "интегралы вычисляются по другим формулам", а не "коэффициенты вычисляются по другим формулам". Интегралы в этих двух случаях действительно вычисляются по другим формулам.


Да по одинаковым они считаются. Просто косинус в единицу обращается и формула с $a_0$ выглядит якобы иначе.

 
 
 
 Re: Проблема с рядом Фурье
Сообщение23.10.2011, 13:41 
Аватара пользователя
А может быть такое что график $S_7(x)$ выглядит вот так?
Cинус и прямая это график начальной функции.
Изображение

 
 
 
 Re: Проблема с рядом Фурье
Сообщение23.10.2011, 14:06 
Аватара пользователя
Думаю что нет. Вы ведь интегрируете на двух участках. И получите фактически два ряда Фурье. Я так понимаю что их нельзя объединить - они так и будут работать - один от $0$ до $\pi$, а второй от $\pi$ до $2\pi$. Т.е. у вас будет две седьмых гармоники $S_7(x)$. Там же разрыв - Фурье не любит разрывы.

Пусть меня поправят если что.

-- 23.10.2011, 14:13 --

Ваши две функции можно обработать как один сигнал только численным методом, работая с преобразованием Фурье в дискретной форме. Нужно будет фактически умножать дискретные амплитуды гармонических базисных функций на дискретные амплитуды исходного сигнала и вычислять матожидание.

 
 
 
 Re: Проблема с рядом Фурье
Сообщение23.10.2011, 14:26 
synphara в сообщении #495322 писал(а):
Думаю что нет. Вы ведь интегрируете на двух участках. И получите фактически два ряда Фурье.
Интегрирует он одну функцию на одном участке --- на отрезке от $0$ до $2\pi$. И получает один ряд Фурье.

 
 
 
 Re: Проблема с рядом Фурье
Сообщение23.10.2011, 14:30 
Аватара пользователя
nnosipov в сообщении #495324 писал(а):
synphara в сообщении #495322 писал(а):
Думаю что нет. Вы ведь интегрируете на двух участках. И получите фактически два ряда Фурье.
Интегрирует он одну функцию на одном участке --- на отрезке от $0$ до $2\pi$. И получает один ряд Фурье.
Возможно. Я тут что-то путаюсь.
Как это записать в виде прямого преобразования Фурье с уже подставленной туда функцией?

 
 
 
 Re: Проблема с рядом Фурье
Сообщение23.10.2011, 14:36 
synphara в сообщении #495325 писал(а):
Как это записать в виде прямого преобразования Фурье с уже подставленной туда функцией?
А зачем? Нужно написать ряд Фурье --- вот и пишем ряд.

 
 
 
 Re: Проблема с рядом Фурье
Сообщение23.10.2011, 14:37 
Аватара пользователя
Его же надо вычислить, а не написать? Как вы его будете вычислять? Как будете получать коэффициенты?

ЗЫ: я не придераюсь, мне просто интересно.

 
 
 
 Re: Проблема с рядом Фурье
Сообщение23.10.2011, 15:37 
Аватара пользователя
Someone в сообщении #495224 писал(а):
Ошиблись. В пределах интегрирования.
Нет не ошибся. Формулы, с учётом разницы в обозначениях, совпадают с теми, что приведены в:
1. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления: В 3 т. Т.III - М.: ФИЗМАТЛИТ, 2005, стр. 496, формула (17)
2. Теория рядов. Воробьев Н.Н., Наука, Главная редакция физико-математической литературы, М., 1979, стр 175.
Просто эти формулы записаны с учётом того, что мы понимаем, что ряд Фурье соответствует периодической функции. Пределы интегрирования вообще могут быть любыми, лишь бы интервал интегрирования был равен периоду $T$ раскладываемой функции (см. текст в Фихтенгольце после формулы (17) на стр. 496).
Someone в сообщении #495224 писал(а):
Я написал, что "интегралы вычисляются по другим формулам", а не "коэффициенты вычисляются по другим формулам". Интегралы в этих двух случаях действительно вычисляются по другим формулам.
Следует понимать, что $$a_1=\frac {2} {T} \int\limits_{-\frac T 2}^{\frac T 2}f(t)\cos(\frac{2\pi}{T} t)dt={\frac {2} {T} \int\limits_{-\frac T 2}^{\frac T 2}f(t)\cos(\frac{2\pi n}{T} t)dt} \rvert_{n=1}.$$ То есть более общее выражение, полученное при любом $n=1,2,3,...$ должно совпадать с тем результатом, который вы получили в частном случае при $n=1$. Если этого не имеет места, значит нужно искать ошибку в общем выражении. А представьте, что неопределённость будет возникать в выражении для коэффициентов для каждых, скажем, чётных $n$, вы что так и будете отдельно вычислять каждый интеграл? :mrgreen:
Someone в сообщении #495224 писал(а):
profrotter в сообщении #495216 писал(а):
Как вы думаете, корректно ли рассматривать значение последовательности $z_n=\frac {\sin(n)} {n}$ при $n=0$?
Не корректно.
Поднимаемся с уровня школьной математики и открываем учебник по математике для первых курсов ВУЗов, скажем, Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления: В 3 т. Т.I - М.: ФИЗМАТЛИТ, 2005 (рекомендовано Министерством образования Российской федерации в качестве учебника для студентов физических и механико-математических специальностей высших учебных заведений!) смотрим главу 2 параграф 4 пункт 66 и на стр. 166 читаем замечание: "Пусть точка $x=x_0$, служащая точкой сгущения для области $X$, в которой определена функция $f(x)$, сама области $X$ не принадлежит, так что в этой точке функция не определена. Если, однако, существует конечный предел $\lim\limits_{x\to x_0}f(x)$, то стоит лишь дополнить определение функции, положив $f(x_0) $ равным этому пределу, чтобы функция оказалась непрерывной в точке $x=x_0$. Это в подобных случаях мы обычно и будем подразумевать." То есть в тех точках, где функция неопределена, но имеется конечный предел, её вполне можно доопределить так, что получится непрерываная функция и ничто, конечно, не мешает говорить о её значения в тех точках, в которых имело место доопределение. Рассмотрим теперь функцию $f(x)=\frac {\sin(x)}{x}$. В точке $x_0=0$ функция не определена, но имеет конечный предел $\lim\limits_{x\to 0}\frac {\sin(x)}{x}=1$ (подробнее см. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления: В 3 т. Т.I - М.: ФИЗМАТЛИТ, 2005 глава 2 параграф 2 стр.139). Стало быть можно говорить о значении $f(0)=1$. Теперь $\frac {\sin(n)}{n}\rvert_{n=0}=f(0)=1$.
Someone в сообщении #495224 писал(а):
profrotter в сообщении #495216 писал(а):
Mike1 в сообщении #494693 писал(а):
Если взять $n = 1$, то получается ошибка т.к. выражение
$\frac{\cos(\pi\cdot n)+1}{1-n}$ получается равным бесконечности? Или нужно брать $n = 2$ ?
Разумеется, он здесь не прав. Ничего здесь не получается "равным бесконечности", это выражение просто не определено при $n=1$.
Рассматривая предел функции $f(x)=\frac{\cos(\pi\cdot x)+1}{1-x}$ при $x\to 1$ мы установим значение выражения $\frac{\cos(\pi\cdot n)+1}{1-n}\rvert_{n=1}=f(1)$. Нетрудно убедится, что это значение определено и конечно. (Тут я не буду лишать автора темы удовольствия установить это самостоятельно).
Someone в сообщении #495224 писал(а):
И Вам не советую пользоваться правилом Лопиталя там, где никакого предела нет. Формальное применение правила Лопиталя может дать неправильный результат. Например, в стартовом сообщении коэффициент $b_1$ вычислен неправильно, и никакое "правило Лопиталя" уже не спасёт.
Открываем учебник Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления: В 3 т. Т.I - М.: ФИЗМАТЛИТ, 2005 глава 4, параграф 4, стр. 351 и смотрим теорему 1: "Пусть 1) функции $f(x)$ и $g(x)$ определены в промежутке $[a,b]$, 2) $\lim\limits_{x\to a}f(x)=0$ и $\lim\limits_{x\to a}g(x)=0$, 3) существуют конечные производные $f'(x)$ и $g'(x) \neq 0$. Тогда $\lim\limits_{x\to a}\frac {f(x)}{g(x)}=\frac {f'(x)}{g'(x)}$" (Теорема принадлежит Лопиталю). В случае функции $f(x)=\frac{\cos(\pi\cdot x)+1}{1-x}$ Все условия теоремы выполнены. О каком неправильном результате вы говорите?
Someone в сообщении #495224 писал(а):
Например, в стартовом сообщении коэффициент $b_1$ вычислен неправильно, и никакое "правило Лопиталя" уже не спасёт.
В стартовом сообщении коэффициент $b_1=\frac{1}{\pi}
(1 - \cos(\pi))=\frac {2}{\pi}$ Причём тут правило Лопиталя? Правильно или неправильно посчитаны коэффициенты, автора темы, похоже не волнует, ибо его уже неоднократно просили привести выкладки с этим расчётом. Будут выкладки - будет и разговор о правильности. В стартовом сообщии автора интересует лишь та проблема, которая связана с расчётом коэффициента $a_1$, исходя из общего выражения для коэффициентов $a_n$

Mike1, довольно строить графики частичных сумм! Вам уже неоднократно (я видел два раза) указали на возможную ошибку в выражениях для коэффициентов ряда Фурье. Искать коэфффициенты за вас никто не будет. Извольте привести выкладки! Мы проверим и скажем где ошибка. Потом уже будете строить свои графики частичных сумм.

 
 
 
 Re: Проблема с рядом Фурье
Сообщение23.10.2011, 15:48 
Аватара пользователя
Мне кажется Mike1 просто быстрым преобразование Фурье в матлабе получает частичные суммы. Он ничего не интегрирует и не вычисляет.

А на счёт моей непонятки с двумя рядами Фурье - может кто-нибудь ответить?

 
 
 
 Re: Проблема с рядом Фурье
Сообщение23.10.2011, 15:56 

(Оффтоп)

profrotter
Но у $\mathbb N$ нету точек сгущения.

 
 
 
 "Ты всё поймёшь, ты всё увидишь сам"
Сообщение23.10.2011, 16:03 
Аватара пользователя
synphara в сообщении #495349 писал(а):
А на счёт моей непонятки с двумя рядами Фурье - может кто-нибудь ответить?
Даже я могу: ну проинтегрируйте вслух $$\int_0^{2\pi}f(t)dt;\quad\text{потом}\quad \int_0^{2\pi}f(t)\sin t\,dt$$Это же определённый интеграл, число. (А сабж из песни старомодной)

 
 
 [ Сообщений: 82 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group