Ошиблись. В пределах интегрирования.
Нет не ошибся. Формулы, с учётом разницы в обозначениях, совпадают с теми, что приведены в:
1. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления: В 3 т. Т.III - М.: ФИЗМАТЛИТ, 2005, стр. 496, формула (17)
2. Теория рядов. Воробьев Н.Н., Наука, Главная редакция физико-математической литературы, М., 1979, стр 175.
Просто эти формулы записаны с учётом того, что мы понимаем, что ряд Фурье соответствует периодической функции. Пределы интегрирования вообще могут быть любыми, лишь бы интервал интегрирования был равен периоду

раскладываемой функции (см. текст в Фихтенгольце после формулы (17) на стр. 496).
Я написал, что "интегралы вычисляются по другим формулам", а не "коэффициенты вычисляются по другим формулам". Интегралы в этих двух случаях действительно вычисляются по другим формулам.
Следует понимать, что

То есть более общее выражение, полученное при любом

должно совпадать с тем результатом, который вы получили в частном случае при

. Если этого не имеет места, значит нужно искать ошибку в общем выражении. А представьте, что неопределённость будет возникать в выражении для коэффициентов для каждых, скажем, чётных

, вы что так и будете отдельно вычислять каждый интеграл?
Как вы думаете, корректно ли рассматривать значение последовательности

при

?
Не корректно.
Поднимаемся с уровня школьной математики и открываем учебник по математике для первых курсов ВУЗов, скажем, Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления: В 3 т. Т.I - М.: ФИЗМАТЛИТ, 2005 (рекомендовано Министерством образования Российской федерации в качестве учебника для студентов физических и механико-математических специальностей высших учебных заведений!) смотрим главу 2 параграф 4 пункт 66 и на стр. 166 читаем замечание: "Пусть точка

, служащая точкой сгущения для области

, в которой определена функция

, сама области

не принадлежит, так что в этой точке функция
не определена. Если, однако,
существует конечный предел

, то стоит лишь дополнить определение функции, положив

равным этому пределу, чтобы функция оказалась непрерывной в точке

.
Это в подобных случаях мы обычно и будем подразумевать." То есть в тех точках, где функция неопределена, но имеется конечный предел, её вполне можно доопределить так, что получится непрерываная функция и ничто, конечно, не мешает говорить о её значения в тех точках, в которых имело место доопределение. Рассмотрим теперь функцию

. В точке

функция не определена, но имеет конечный предел

(подробнее см. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления: В 3 т. Т.I - М.: ФИЗМАТЛИТ, 2005 глава 2 параграф 2 стр.139). Стало быть можно говорить о значении

. Теперь

.
Если взять

, то получается ошибка т.к. выражение

получается равным бесконечности? Или нужно брать

?
Разумеется, он здесь не прав. Ничего здесь не получается "равным бесконечности", это выражение просто не определено при

.
Рассматривая предел функции

при

мы установим значение выражения

. Нетрудно убедится, что это значение определено и конечно. (Тут я не буду лишать автора темы удовольствия установить это самостоятельно).
И Вам не советую пользоваться правилом Лопиталя там, где никакого предела нет. Формальное применение правила Лопиталя может дать неправильный результат. Например, в стартовом сообщении коэффициент

вычислен неправильно, и никакое "правило Лопиталя" уже не спасёт.
Открываем учебник Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления: В 3 т. Т.I - М.: ФИЗМАТЛИТ, 2005 глава 4, параграф 4, стр. 351 и смотрим теорему 1: "Пусть 1) функции

и

определены в промежутке
![$[a,b]$ $[a,b]$](https://dxdy-04.korotkov.co.uk/f/f/e/4/fe477a2781d275b4481790690fccd15f82.png)
, 2)

и

, 3) существуют конечные производные

и

. Тогда

" (Теорема принадлежит Лопиталю). В случае функции

Все условия теоремы выполнены. О каком неправильном результате вы говорите?
Например, в стартовом сообщении коэффициент

вычислен неправильно, и никакое "правило Лопиталя" уже не спасёт.
В стартовом сообщении коэффициент

Причём тут правило Лопиталя? Правильно или неправильно посчитаны коэффициенты, автора темы, похоже не волнует, ибо его уже неоднократно просили привести выкладки с этим расчётом. Будут выкладки - будет и разговор о правильности. В стартовом сообщии автора интересует лишь та проблема, которая связана с расчётом коэффициента

, исходя из общего выражения для коэффициентов
Mike1, довольно строить графики частичных сумм! Вам уже неоднократно (я видел два раза) указали на возможную ошибку в выражениях для коэффициентов ряда Фурье. Искать коэфффициенты за вас никто не будет. Извольте привести выкладки! Мы проверим и скажем где ошибка. Потом уже будете строить свои графики частичных сумм.