2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.
 
 
Сообщение31.03.2011, 13:36 
Oleg Zubelevich
Вообще, понятие предкомпактности работает в равномерном пространстве. Метрическое и локально выпуклое -частные случаи.
Это Вы сформулировали критерий предкомпактности -- множество предкомпактно тогда и только тогда, когда оно вполне ограничено.
Понятно, что взять за определение, а что за критерий (с соответствующим доказательством), совершенно не принципиально.

-- Чт мар 31, 2011 15:38:11 --

ewert в сообщении #429479 писал(а):
Padawan в сообщении #429474 писал(а):
Относительно компактное подмножество топологического пространства -- замыкание компактно.Предкомпактное метрическое пространство ( в частности, подмножество метрического пространства) -- пополнение компактно.

Это одно и то же -- там, где пересекается. Т.е. на подмножествах метрического пространства.

В общем случае -- нет. Совпадают на подмножествах полного метрического пространства.

 
 
 
 
Сообщение31.03.2011, 13:43 
alex1910 в сообщении #429478 писал(а):
в топ. пространстве корректно определено понятие предельной точки, и, соотв.,понятие пополнения - присоединения к множеству всех своих предельных точек

Ну не так быстро. Пополнение пространства -- это вовсе не присоединение к нему его недостающих предельных точек, таковых просто не существует.

 
 
 
 
Сообщение31.03.2011, 13:47 
Padawan в сообщении #429483 писал(а):
Вообще, понятие предкомпактности работает в равномерном пространстве. Метрическое и локально выпуклое -частные случаи.

спасибо, я в курсе, вот я чтоб не обсуждать равномерные структуры, сразу сказал про локально выпуклые пространства
Padawan в сообщении #429483 писал(а):
Это Вы сформулировали критерий предкомпактности -- множество предкомпактно тогда и только тогда, когда оно вполне ограничено.

с точки зрения общей топологии критерий, с точки зрения локально выпуклых пространств -- определение.
Padawan в сообщении #429483 писал(а):
Понятно, что взять за определение, а что за критерий (с соответствующим доказательством), совершенно не принципиально.

Конечно, только важно проговаривать и то и другое.

 
 
 
 
Сообщение31.03.2011, 13:51 
Понятий, связанных с полнотой и компактностью целая куча. Может их проклассифицируем? Все возможные варианты, кто что знает: в топологических пространствах, в метрическиких пространствах, топологических векторных пространствах, в равномерных пространства. С указанием, что из чего следует, и что чьим частным случаем является.
Компактность, счётная компактность, финальная компактность, секвенциальная компактность, полнота, полная ограниченность, предкомпактность, относительная компактность. Что еще?

 
 
 
 Re:
Сообщение31.03.2011, 13:57 
Padawan в сообщении #429491 писал(а):
Понятий, связанных с полнотой и компактностью целая куча. Может их проклассифицируем? Все возможные варианты, кто что знает: в топологических пространствах, в метрическиких пространствах, топологических векторных пространствах, в равномерных пространства. С указанием, что из чего следует, и что чьим частным случаем является.
Компактность, счётная компактность, финальная компактность, секвенциальная компактность, полнота, полная ограниченность, предкомпактность, относительная компактность. Что еще?


Зачем? Если Вы хотите опубликовать [нормальную] статью и Вас [немного] не поймут - читатели/редакторы просто вставят/попросят вставить необходимые короткие разъясения/определения.

 
 
 
 
Сообщение31.03.2011, 13:58 
alex1910
Чтобы прийти к консенсусу на форуме. И для ссылок (внутри форума).

 
 
 
 Re:
Сообщение31.03.2011, 14:00 
ewert в сообщении #429486 писал(а):
alex1910 в сообщении #429478 писал(а):
в топ. пространстве корректно определено понятие предельной точки, и, соотв.,понятие пополнения - присоединения к множеству всех своих предельных точек

Ну не так быстро. Пополнение пространства -- это вовсе не присоединение к нему его недостающих предельных точек, таковых просто не существует.


Невнимательно читаете. Не в топологическом, а в ХАУСДОРФОВОМ топологическом: никаких проблем с предельными точками и даже пределами.

-- Чт мар 31, 2011 15:02:45 --

Padawan в сообщении #429495 писал(а):
alex1910
Чтобы прийти к консенсусу на форуме. И для ссылок (внутри форума).


Консенсус на интернет-форуме - нереально.
На околоматематическом - нереально вдвойне.

 
 
 
 
Сообщение31.03.2011, 14:03 
В топологическом пространстве процедура пополнения не определена. Она определена, например, в метрическом пространстве.

 
 
 
 Re:
Сообщение31.03.2011, 14:07 
Padawan в сообщении #429498 писал(а):
В топологическом пространстве процедура пополнения не определена. Она определена, например, в метрическом пространстве.


Пополнения чего? Множества?
В чем проблема, если топология хаусдорфова? Сформулируйте понятие предельной точки и предела на языке окрестностей данной топологии - и убедитесь, что все корректно определено и работает так же, как и в наивном матане за первый курс:)

 
 
 
 Re:
Сообщение31.03.2011, 14:07 
Padawan в сообщении #429491 писал(а):
Понятий, связанных с полнотой и компактностью целая куча. Может их проклассифицируем? Все возможные варианты, кто что знает: в топологических пространствах, в метрическиких пространствах, топологических векторных пространствах, в равномерных пространства. С указанием, что из чего следует, и что чьим частным случаем является.
Компактность, счётная компактность, финальная компактность, секвенциальная компактность, полнота, полная ограниченность, предкомпактность, относительная компактность. Что еще?

Ну это дело Вашего личного вкуса, когда остановиться. Мне кажется, что формулировки определений компактности, предкомпактности, теоремы о связи между этими понятиями вполне достаточно (хотя бы и только для случая линейцных топ. пространств). Тем более, что это все естественно с точки зрения стандартных курстов анализа, в которых проходят критерий компактности в метрических пространствах в терминах эпсилон-сетей. Вот стоит ли вводить по этому случаю сразу и равномерныек структуры, я не знаю.

 
 
 
 Re: Re:
Сообщение31.03.2011, 14:15 
alex1910 в сообщении #429500 писал(а):
Padawan в сообщении #429498 писал(а):
В топологическом пространстве процедура пополнения не определена. Она определена, например, в метрическом пространстве.


Пополнения чего? Множества?
В чем проблема, если топология хаусдорфова? Сформулируйте понятие предельной точки и предела на языке окрестностей данной топологии - и убедитесь, что все корректно определено и работает так же, как и в наивном матане за первый курс:)

Вы сейчас говорите не о пополнении, а о замыкании множества в топологическом пространстве.

 
 
 
 Re: Re:
Сообщение31.03.2011, 14:36 
Padawan в сообщении #429504 писал(а):
alex1910 в сообщении #429500 писал(а):
Padawan в сообщении #429498 писал(а):
В топологическом пространстве процедура пополнения не определена. Она определена, например, в метрическом пространстве.


Пополнения чего? Множества?
В чем проблема, если топология хаусдорфова? Сформулируйте понятие предельной точки и предела на языке окрестностей данной топологии - и убедитесь, что все корректно определено и работает так же, как и в наивном матане за первый курс:)

Вы сейчас говорите не о пополнении, а о замыкании множества в топологическом пространстве.


Пополнение - добавление к множеству всех его предельных точек (в случае, когда предельные точки вообще могут быть определены).

Замыкание множества M - "наименьшее" ( по включению, пересечение всех замкнутых множеств, содержащих M) замкнутое в данной топологии множество, содержащее М.

Беседа прекращена в силу очевидной бесполезности.

 
 
 
 
Сообщение31.03.2011, 14:41 
Аватара пользователя
alex1910

Цитата:
А я про пространства ничего и не говорил, так, для начала...

Я вас спросил и вы ответили
Цитата:
Именно так и определяю, надеюсь тут ни с кем разногласий не возникнет.


Значит как-то определяли, только не сказали как!

 
 
 
 Re: Re:
Сообщение31.03.2011, 14:53 
alex1910 в сообщении #429514 писал(а):
Пополнение - добавление к множеству всех его предельных точек (в случае, когда предельные точки вообще могут быть определены).

Замыкание множества M - "наименьшее" ( по включению, пересечение всех замкнутых множеств, содержащих M) замкнутое в данной топологии множество, содержащее М.

Пополнение = Замыкание.

 
 
 
 
Сообщение31.03.2011, 14:59 
alex1910 в сообщении #429514 писал(а):
Пополнение - добавление к множеству всех его предельных точек (в случае, когда предельные точки вообще могут быть определены).

Термин "пополнение" применим не к подмножеству, а к пространству в целом. В этом случае никаких "предельных точек", не входящих в пространство, не существует, потому и говорить об их добавлении бессмысленно.

В случае метрических пространств существует процедура пополнения, которая устанавливает изоморфизм между исходным пространством и частью некоторого другого, уже полного. Есть ли аналогичная процедура для топологических пространств, пусть даже хаусдорфовых -- я не в курсе.

Во всяком случае, Вы явно путаете понятия "пополнение" и "замыкание".

Padawan в сообщении #429483 писал(а):
В общем случае -- нет. Совпадают на подмножествах полного метрического пространства.

А это действительно так?... Во всяком случае, из секвенциальной компактности множества уже следует его полнота как самостоятельного метрического пространства.

 
 
 [ Сообщений: 70 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group