но в то же время нематричной нормы?
Матричной нормы как чего-то специального -- не существует, это методический глюк. Существует норма ваще. И существует операторная норма ваще (которая, конечно, нормой тоже является, но не просто нормой). Норма же матрицы -- это лишь частный случай одного из этих понятий. Выбирайте по вкусу, но чего-то выбрать придётся.
-- Пн янв 17, 2011 01:32:45 --Разумеется, возьмите просто нелинейный оператор в конечномерном пространстве.
Нет, нелинейные операторы тут совершенно не при чём, мы тут переливаем из исключительно линейно-пустого в не менее линейное порожнее.