"Привести пример функции, заданной и конечной на 

 и неограниченной на любом интервале."
Не понимаю задание. 

  Как функция может быть конечной, если она не ограничена?
Привести пример функции, заданной и конечной на 

 значит, что каждому элементу 

 сопоставлен элемент множества значений (поскольку речь идет о неограниченности, то множество значений должно быть подмножеством 

). Но раз "конечной", то множество значений конечно и имеет минимум и максимум. Ограниченность очевидна. Поиск неограниченной функции с конечным множеством значений напоминает поиск черного котёнка в темной комнате, где его уже нет.
Не, это я понял:) Просто мне казалось, что нет такой функции. Хотя уже думаю, что есть. 
Вот такая подойдет? 

, если 

 — рациональное (записано как несократимая дробь), и нуль в противном случае (и еще 

.
А я не понял. Ваша функция задана на 

, а в задании на 

. Множество её значений - множество целых чисел. Я не знал, что множество целых чисел конечно.
Пойдёт.
Куда?