2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Про странный способ изложения в математических книгах
Сообщение17.10.2010, 17:19 
Аватара пользователя
Виктор Викторов в сообщении #362800 писал(а):
Здесь на числовой прямой "замкнутость вкупе с ограниченностью" множества равносильна тому, что из каждого открытого покрытия этого множества можно выделить открытое подпокрытие и ... метрическое понятие "ограниченность" исчезло. Можно определять компактность в топологическом пространстве.

Пропущено слово "конечное". Здесь на числовой прямой "замкнутость вкупе с ограниченностью" множества равносильна тому, что из каждого открытого покрытия этого множества можно выделить конечное открытое подпокрытие и ... метрическое понятие "ограниченность" исчезло.

Виктор Викторов в сообщении #362780 писал(а):
4. А почему в определении индуцированной топологии открытым определяется каждое множество, пересекающееся с открытым множеством в объемлющем пространстве? Уж лучше было бы считать открытым каждое множество открытое в объемлющем пространстве.

Почти как у Пушкина. "Пропущенная глава". Рассмотрим вложение множества в пространство (каждый элемент множества сопоставлен сам себе), индуцированная топология (открытым определяется каждое множество, пересекающееся с открытым множеством в объемлющем пространстве) наименьшая топология при которой отображение вложения непрерывно. Поэтому, плохо было бы считать открытым только каждое множество открытое в объемлющем пространстве.

 
 
 
 Re: Про странный способ изложения в математических книгах
Сообщение18.10.2010, 13:46 
Аватара пользователя
Для прикладников компактность можно объяснить "на пальцах" примерно так: множество является компактным, если на нём можно "всё посчитать на компьютере" со сколь угодно высокой точностью.
Прикладник: а я всё могу посчитать на компьютере со сколь угодно высокой точностью, дайте только кластер помощнее.
Преподаватель: а Вы попробуйте приблизить функцию Хевисайда непрерывными функциями в норме $\mathbf{C}[]$.
Прикладник (погуглив, кто такие Хевисайд и норма): Это глупо! Для таких задач надо норму менять.
Преподаватель: вот! Компактность как раз и есть неглупость нормы.
:D

 
 
 
 Re: Про странный способ изложения в математических книгах
Сообщение18.10.2010, 13:56 
worm2 в сообщении #363209 писал(а):
Преподаватель: а Вы попробуйте приблизить функцию Хевисайда непрерывными функциями в норме $\mathbf{C}[]$.
Прикладник (погуглив, кто такие Хевисайд и норма): Это глупо! Для таких задач надо норму менять.
Преподаватель: вот! Компактность как раз и есть неглупость нормы.
:D

осталось только выяснить, при чём тут компактность

 
 
 
 Re: Про странный способ изложения в математических книгах
Сообщение18.10.2010, 15:02 
Аватара пользователя
Возможно, функцию Хевисайда здесь я не очень удачно приплёл. Она сама не принадлежит $\mathbf{C}[]$. А поэтому непонятно, что же здесь проверяется на компактность.
Если взять последовательность сплайнов 1-й степени для $H(x)$ на сетках с равноотстоящими узлами, можно показать, что эта последовательность не является компактом в $\mathbf{C}[]$.
С одной стороны, можно взять другое множество сплайнов на тех же самых сетках, принимающие значение 1 на одной из точек сетки и 0 на других, и показать некомпактность проще и нагляднее, без $H(x)$.
С другой стороны, этот более простой и наглядный способ не даёт понимания, каким образом компактность вредна. А тут простая инженерная задача приближения функции не решается из-за отсутствия компактности.

 
 
 
 Re: Про странный способ изложения в математических книгах
Сообщение18.10.2010, 16:36 
worm2 в сообщении #363224 писал(а):
А тут простая инженерная задача приближения функции не решается из-за отсутствия компактности.

А какая задача-то?

 
 
 
 Re: Про странный способ изложения в математических книгах
Сообщение18.10.2010, 16:41 
worm2 в сообщении #363224 писал(а):
А тут простая инженерная задача приближения функции не решается из-за отсутствия компактности.
А я всю жизнь считал, что из-за неполноты пространства...

 
 
 
 Re: Про странный способ изложения в математических книгах
Сообщение18.10.2010, 16:56 
Даже и полнота тут тоже не при чём. К тому же и $C$, и $L_{\infty}$ -- полны. Пространство линейных сплайнов -- разумеется, не полно; ну и что?...

 
 
 
 Re: Про странный способ изложения в математических книгах
Сообщение18.10.2010, 17:17 
Аватара пользователя
ewert писал(а):
А какая задача-то?
Приблизить разрывную функцию непрерывной.
Ну хорошо, не обязательно разрывную. Почти разрывную :-) Хотя, с вычислительной точки зрения это несущественно.

 
 
 
 Re: Про странный способ изложения в математических книгах
Сообщение18.10.2010, 17:20 
Ну и при чём тут компактность-то?

Она неприближаема просто потому, что не входит в подпространство непрерывных функций.

 
 
 
 Re: Про странный способ изложения в математических книгах
Сообщение18.10.2010, 17:24 
Аватара пользователя
А в $L_2$ очень даже приближаема. И совсем не потому, что $L_2$ "допускает" разрывные функции (теми же сплайнами приближаема). $L_{\infty}$ тоже допускает, однако с точки зрения практики ведёт себя так же, как $C$.

 
 
 
 Re: Про странный способ изложения в математических книгах
Сообщение18.10.2010, 17:30 
worm2 в сообщении #363277 писал(а):
А в $L_2$ очень даже приближаема.

Странно было б иначе, раз уж она сама из $L_2$ (как минимум локально).

worm2 в сообщении #363277 писал(а):
$L_{\infty}$ тоже допускает, однако с точки зрения практики ведёт себя так же, как $C$.

И как же?...

 
 
 
 Re: Про странный способ изложения в математических книгах
Сообщение18.10.2010, 17:35 
Аватара пользователя
ewert писал(а):
И как же?...
Указанная последовательность сплайнов не является в $L_{\infty}$ компактным множеством. А в $L_{2}$ — является.

 
 
 
 Re: Про странный способ изложения в математических книгах
Сообщение18.10.2010, 17:40 
worm2 в сообщении #363284 писал(а):
Указанная последовательность сплайнов не является в $L_{\infty}$ компактным множеством. А в $L_{2}$ — является.

Во-первых, так и не понятно, какая в точности последовательность. А во-вторых, если она сходится, то, разумеется, и предкомпактна. И что с того проку?

Призраков компактности по-прежнему не наблюдается.

 
 
 
 Re: Про странный способ изложения в математических книгах
Сообщение18.10.2010, 18:38 
Аватара пользователя
ewert писал(а):
Во-первых, так и не понятно, какая в точности последовательность.
На отрезке, содержащем 0 во внутренней точке (пусть будет $[-1,1]$) будем рассматривать сетки с постоянным шагом (они делят этот отрезок на 2, 3, 4, и т.д. равных подотрезков). На каждой такой сетке строится (интерполяционный) сплайн (первой степени) для функции Хевисайда $H(x)$. Построенное бесконечное множество сплайнов будет компактным или некомпактным в зависимости от метрики, которую мы выберем.
Цитата:
А во-вторых, если она сходится, то, разумеется, и предкомпактна. И что с того проку?
Я бы сейчас заострял внимание не на том, что она сходится, а, наоборот, на том, что если она компактна, то у неё есть предельная точка, которая, если повезёт, может быть... впрочем, зайду с другой стороны.

Пусть мы решаем какую-то задачу матфизики. Решаем численно: выбираем метод, строим сетку, как-нибудь аппроксимируем, считаем на компьютере. Встаёт вопрос А: сможем ли мы путём сгущения сетки и увеличения разрядности получить сколь угодно точное решение? Естественным образом с вопросом А связан вопрос Б: а существует ли вообще функция $X$ (хоть решение, хоть не решение), к которой нельзя неограниченно приблизиться (таким путём)? Если Б верно, то с А возникают проблемы: а вдруг наше решение именно такое, как это $X$? Если же Б неверно, есть повод для оптимизма.
Но что же значит "Б неверно"? Это и есть компактность множества сеточных функций.

 
 
 
 Re: Про странный способ изложения в математических книгах
Сообщение18.10.2010, 18:43 
ewert в сообщении #363268 писал(а):
Пространство линейных сплайнов -- разумеется, не полно; ну и что?...
Ну и всё (с)

 
 
 [ Сообщений: 69 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group