2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 Re: Сила тяжести и вода
Сообщение22.05.2010, 17:52 
Circiter. График замысловатый.
Circiter в сообщении #322170 писал(а):
Причем для радиально неоднородной планеты поведение графика в окрестности ядра сильно изменяется, но сфера Ширшова остается на месте...

Что это значит :?:
Circiter в сообщении #322170 писал(а):
грав. поле камня никак на его строение не влияет, оно исчезающе слабое. К тому же планеты ещё и вращаются... В общем, совсем разные вещи.

Строение камней обусловлено тем, в каких условиях или при каких процессах они образуются.

 
 
 
 Re: Сила тяжести и вода
Сообщение24.05.2010, 17:16 
2Виктор Ширшов
Цитата:
Что это значит

Я имел ввиду, что разрывной пик на графике не исчезает даже если плотность планеты может меняться в пространстве (например, если ядро планеты плотнее коры).

Да это и не важно. У меня там какая-то ошибка, на самом деле потенциал внутри шара должеен быть распределен как-нибудь попроще...

Более того, в самом потенциале, и даже в его градиенте непосредственный физический смысл усмотреть сложно... Мало ли, что там на графике... По-настоящему надо было бы начать волноваться только если были бы какие-то аномалии во второй производной потенциала... :)

Кстати, сила тяготения внутри однородной планеты массы $m$ на расстоянии $r$ от ядра (центра) равна $F(r)=mr$, т.е., меняется при удалении к поверхности по линейному закону, сильно отличающемуся от ньютоновских обратных квадратов $F(r)=m/r^2$...

Хотя при аккуратном интегрировании никакой сферы Ширшова не наблюдается, но все-равно хотелось бы прояснить ситуацию с дискретной моделью... Какова природа пика?

Цитата:
Строение камней обусловлено тем, в каких условиях или при каких процессах они образуются.

О, с этим я не могу не согласиться. :)

Кстати, как вам сценарий образования круглых камней при скатывании затравки по склону горы (принцип роста снежного кома) или при "капиллярном" распространении лавы в песке/гравии (представьте себе падение небольшого количества сахарного сиропа в сухой цемент)?

 
 
 
 Re: Сила тяжести и вода
Сообщение24.05.2010, 18:03 
Аватара пользователя
Circiter, я позволю себе вставить словечко. Предположим, гипотетическая шарообразная планета состоит из золота и покрыта толстым слоем сухого льда. В этом случае поверхность Ширшова будет совпадать с поверхностью золотого шара и вода , если она есть на планете, будет концентрироваться под сухим льдом.
В случае Земли надо признать, что поверхность Ширшова располагается вблизи поверхности Земли, а в некоторых точках и над ней. Обладая свойством Ширшова течь в сторону мест с наибольшей силой тяжести, вода иногда залегает неглубоко под землёй, а иногда выходит наверх, чему подтверждением являются родники и гейзеры. Если бы вода просто текла вдоль вектора тяжести, то никаких родников мы бы не наблюдали, вода давно просочилась бы к центру планеты, вскипела и разорвала бы астрономическое тело на небольшие фрагменты.
Кстати, закону Ширшова может подчиняться и жидкая лава. Тогда, если предположить, что на Земле существовали места, где по аномальным соображениям поверхность Ширшова образовывала бы локальные вздутия и
располагалась на высотах 13-16 км, то в этих местах могли бы образовываться вулканы, лава бы поднималась на означенную высоту, парила бы там, остывая в виде больших капель, а потом естественным способом скатывалась на землю уже в виде каменных шаров.

 
 
 
 Re: Сила тяжести и вода
Сообщение25.05.2010, 01:31 
Какое-то рациональное зерно в свойстве Ширшова (о стекании жидкости в области с большей силой тяжести) все-таки есть... Действительно, для массивного, пусть даже и однородного шара, его грав. потенциал у центра больше чем на поверхности (известный факт). То есть, потенциальная энергия пробного тела находящегося на поверхности шара будет меньше чем вблизи центра. А стало быть, может действовать какой-нибудь вариант принципа наименьшего действия, в результате чего пробное тело будет стремиться занять положение, минимизирующее его (потенциальную) энергию... :)

А если сюда ещё присовокупить многочисленные (но сомнительные) сообщения о местах, в которых жидкости текут вверх (у меня такое в ванной однажды наблюдалось, пришлось трубы чистить :) )... А если ещё и посмотреть на, как правило, весьма пестрые карты гравитационных аномалий...

В общем, хочу ещё какой-нибудь численный модельный эксперимент придумать. :)

 
 
 
 Re: Сила тяжести и вода
Сообщение25.05.2010, 01:56 
Circiter в сообщении #323638 писал(а):
Какое-то рациональное зерно в свойстве Ширшова (о стекании жидкости в области с большей силой тяжести) все-таки есть... Действительно, для массивного, пусть даже и однородного шара, его грав. потенциал у центра больше чем на поверхности (известный факт).
Я понимаю, что последнее время в темах Виктора Ширшова принято шутить, но на всякий случай поправлю: гравитационный потенциал в центре сферически симметричного тела минимален.

 
 
 
 Re: Сила тяжести и вода
Сообщение25.05.2010, 04:18 
2venco
Что вы, я и не думал шутить. Вон, недавно один старпер рассказывал, что неподалеку от алматинской области, на казахстанско-китайской границе, из одного водоема китайцы тырят воду по открытому акведуку, ведущему вверх (ни труб, ни насосов, ни архимедовых винтов там нет, просто желоб).

Цитата:
гравитационный потенциал в центре сферически симметричного тела минимален

Боюсь, мы говорим о разных вещах. Я вот что имел ввиду. Известно (а если надо будет, то могу и вывести), что внутри шара радиуса $R$ с плотностью $\rho(r)$ и массой $m(R):\ dm(r)=4\pi\rho(r)r^2dr$, на расстоянии $r\leqslantR$ от центра, потенциал равен $$U(r)=\frac{m(r)}{r}+4\pi\int\limits_r^R \rho(x)xdx.$$

Отсюда можно найти $U(0)$, т.е. потенциал в центре. Учитывая, что $$\lim_{r\to 0}\frac{m(r)}{r}=0$$ и полагая $\rho(r)=const=\rho$, можно утверждать, что искомый потенциал есть $$U(0)=4\pi\rho\int\limits_0^R xdx=4\pi\frac{R^2}{2}\rho=\frac{3}{2}\cdot\frac{4}{3}\pi R^2\rho.$$
Замечая, что $U(R)=m(R)/R=4\pi R^2\rho/3$ получаем $U(0)=3U(R)/2$, т.е. $U(0)>U(R)$. Воть...

-- Вт май 25, 2010 07:28:44 --

Как же мне нравится этот раздел форума, модераторы здесь не злобствуют... :)

 
 
 
 Re: Сила тяжести и вода
Сообщение25.05.2010, 04:53 
Circiter, у вас знак потенциала не тот. Если на бесконечности потенциал 0, то чем ближе, тем отрицательней.

Насчёт воды, текущей вверх.
Вестибюлярный аппарат очень не точен, поэтому при определении вертикали/горизонтали мозг ориентируется на другие чувства, в основном зрение, а при его недостатке - осязание и мышечное. Так вот, зрение - самое точное, и обычно имеет приоритет, поэтому в небольших пределах, в пределах погрешности других органов чувст, можно обмануть человека с горизонталью. Для этого нужно, чтобы рельеф, видимый горизонт, и т.д. намекали на искажённую плоскость горизонтали. Подобные места и пользуются славой необъяснимых нарушений законов физики, хотя настоящие гравитационные аномалии дают гораздо меньший эффект (отклонение от идеальной вертикали - меньше минуты), и глазами его увидеть невозможно, особенно если учесть, что даже в аномалиях вертикаль (направление силы тяжести) всегда перпендикулярна горизонтали (эквипотенциальная поверхность).

 
 
 
 Re: Сила тяжести и вода
Сообщение25.05.2010, 05:10 
2venco
Цитата:
Насчёт воды, текущей вверх.
Вестибюлярный аппарат очень не точен...

Вот и китайцы так объясняют этот феномен, а воду продолжают тырить. :)

Цитата:
у вас знак потенциала не тот

Ну при выводе начальной формулы я это учитывал. А получилось так. Хотя да, это не совсем потенциал, это больше все-таки силовая функция... Но смысл тот-же. Я ещё покумекаю на эту тему, а пока запутался. :)

 
 
 
 Re: Сила тяжести и вода
Сообщение25.05.2010, 09:50 
Аватара пользователя
Виктор Ширшов является инициатором (хотел написать стартером, но Circiter в своём предпредыдущем сообщении несколько исказил это слово, (не?)вольно скомпрометировав его, так что я на всякий случай прибегну к синониму). Да, так вот мы знаем Виктора Ширшова как начинателя многих тем в самых разных разделах форума. Не все темы могут претендовать на строгую научность, вернее, на соответствие официально принятой на данный момент научной(?) точке зрения, однако вспомним о Лобачевском, который от обиды непризнания подвергся недугу, впрочем, объяснённому упорным geomathом численным законом Истории, что не отменяет моего ежедневного вздрагивания при виде в первых строках полотнища новых тем этой формулы "Лобачевский ослеп", прости Господи, напоминающее известную фразу христиан, по миллиону раз произносимую ими в день Великого Праздника.
Так вот. Мы можем критиковать или подшучивать над темами ВШ, но не можем не видеть их популярности, обсуждаемости и несомненной интересности. Я уже осторожно предлагал выделить раздел "Академия Пана Кляксы" "Астрономия", в котором ВШ мог бы быть куратором, хотя надеюсь, что он не ограничит свои темы только каменными шарами. А то в последнее время, ну да ладно об этом.

 
 
 
 Re: Сила тяжести и вода
Сообщение27.05.2010, 07:14 
Circiter в сообщении #323646 писал(а):
, т.е. $U(0)>U(R)$. Воть...

правильно. Только, во-первых, с точностью до наоборот (знак потерян). А во-вторых, зачем так стараться, достаточно указать на просто монотонность того потенциала. (А что это все вообще не имеет отношения к силе тяжести -- умолчим).

 
 
 
 Re: Сила тяжести и вода
Сообщение27.05.2010, 20:26 
2ewert & venco
Да, я разобрался со знаком. Сам потенциал $\varphi$, кажется, равен $\varphi(r)=U(\infty)-U(r)$. Причем в гравиметрии вроде-бы принято игнорировать этот знак, отождествляя потенциал и силовую функцию...

ewert писал(а):
А что это все вообще не имеет отношения к силе тяжести -- умолчим

Ну я уже где-то выше упоминал о "ненаблюдаемости" потенциала... Но все равно, интересно ведь!

Кстати, что вы думаете о том пике на графике? Это артефакт дискретизации, ошибка в рассуждениях/формуле, реальная аномалия или ещё что? :)

 
 
 
 Re: Сила тяжести и вода
Сообщение28.05.2010, 20:22 
venco в сообщении #323640 писал(а):
Я понимаю, что последнее время в темах Виктора Ширшова принято шутить, но на всякий случай поправлю: гравитационный потенциал в центре сферически симметричного тела минимален.

Говорю на полном серьёзе: 0
gris в сообщении #323503 писал(а):
В случае Земли надо признать, что поверхность Ширшова располагается вблизи поверхности Земли, а в некоторых точках и над ней. Обладая свойством Ширшова течь в сторону мест с наибольшей силой тяжести, вода иногда залегает неглубоко под землёй, а иногда выходит наверх, чему подтверждением являются родники и гейзеры

gris. Академику Пану Кляксе :lol: также известно, что артезианская вода связана с особенностями геологического строения района.

 
 
 
 Re: Сила тяжести и вода
Сообщение29.05.2010, 00:36 
2Виктор Ширшов
Цитата:
Говорю на полном серьёзе: 0

Не может быть!

 
 
 
 Re: Сила тяжести и вода
Сообщение01.06.2010, 08:13 
Виктор Ширшов в сообщении #325016 писал(а):
Говорю на полном серьёзе: 0

а каков же он тогда на подлете к альфе центавре?

 
 
 
 Re: Сила тяжести и вода
Сообщение04.06.2010, 20:14 
ewert в сообщении #326185 писал(а):
а каков же он тогда на подлете к альфе центавре?

На подлёте к $a$ Центавра сказать не могу, а вот в центре звезды, вопреки расхожему мнению, 0: так как в центр звезды, как материальной точки, направлены со всех сторон разнонаправленные равные гравитационные силы.

 
 
 [ Сообщений: 77 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group