2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4  След.
 
 Бесконечные кардинальные числа: n = n^2
Сообщение09.04.2010, 23:00 
Доказать, что $n=n^2$, если $n$ - бесконечное кардинальное число

 
 
 
 Re: Бесконечные кардинальные числа
Сообщение09.04.2010, 23:37 
Аватара пользователя
Я сто лет назад решал где-то так, может, можно проще. Пусть есть бесконечное множество $A$. Сначала надо доказать, что $A$ равномощно $A\times \mathbb N$. То есть это последовательности элементов из $A$. Тут нужна аксиома выбора (а именно, версия с вполне упорядочиванием), не уверен, что нельзя без нее обойтись. Точно так же $A^2$ равномощно последовательностям элементов из $A^2$, то есть последовательностям пар элементов из $A$, что, как легко догадаться, то же самое, что последовательность элементов из $A$.

UPD: Глупость какую-то написал.

 
 
 
 Re: Бесконечные кардинальные числа
Сообщение10.04.2010, 02:50 
Хорхе в сообщении #308155 писал(а):
не уверен, что нельзя без нее обойтись.

Нельзя. Не помню, как это доказывается, но утверждение, что любое бесконечное множество равномощно своему квадрату, эквивалентно аксиоме выбора.

 
 
 
 Re: Бесконечные кардинальные числа
Сообщение10.04.2010, 13:51 
Хорхе
$A\times\mathbb{N}$ -- это же не последовательности элементов из $A$. Должно быть $A^\mathbb{N}$ -- множество всех отображений из $\mathbb{N}$ в $A$.

 
 
 
 Re: Бесконечные кардинальные числа
Сообщение10.04.2010, 22:07 
Аватара пользователя
Padawan в сообщении #308239 писал(а):
Хорхе
$A\times\mathbb{N}$ -- это же не последовательности элементов из $A$. Должно быть $A^\mathbb{N}$ -- множество всех отображений из $\mathbb{N}$ в $A$.

Да, я уже заметил, см. выше.

 
 
 
 Re: Бесконечные кардинальные числа
Сообщение11.04.2010, 13:50 
Вообще говоря, $A^{\mathbb N}$ для бесконечного $A$ не всегда равномощно $A$. Например, для $A=\mathbb N$.

 !  Jnrty:
Непонятно, что эта тема делает в дискуссионном разделе. Переношу.

 
 
 
 Re: Бесконечные кардинальные числа
Сообщение11.04.2010, 18:18 
Аватара пользователя
Знаю одно доказательство, но уж больно оно длинное. Поэтому могу тезисно нарисовать, а далее - sapienti sat :)

Пользуемся трансфинитной индукцией. Для $n=\mathbb N$ утверждение, очевидно, истинное.
Допустим, что для любого бесконечного кардинала $k<n$ имеет место равенство $k^2=k$. Докажем для $n$.

$n\times n$ (прямое произведение) - это предел цепи ординалов $\{\alpha\times\alpha:\;\alpha<n\}$. На этом месте, в принципе, можно сослаться на теорему о мощности предела цепи, но мы сделаем вид, что не знаем ее.

Поскольку $\alpha<n$, его мощность также меньше $n$, а значит, $k_\alpha=||\alpha\times\alpha||<n$ по предположению индукции.

Строим множество всех биекций $f_\alpha:\alpha\times\alpha\leftrightarrow \lambda$, где $\lambda$ - ординал мощности $k_\alpha$. Множество $\{f_\alpha\}_\alpha$ частично упорядочно по вложению (как любое непустое множество вообще), поэтому в нем есть сквозная цепь (вот тут и работает аксиома выбора - наличие сквозной цепи следует из леммы Цорна, которая эквивалентна АС, а наличие биекции между произволным множеством и ординалом следует из теоремы Цермело, котороя эквивалентна АС).

Пусть $C\subseteq\{f_\alpha\}_\alpha$ - сквозная цепь, т.е. $C$ линейно упорядочено по вложению и не существует такой биекции $f_\alpha\notin C$, что $\cup C\subseteq f_\alpha$.

Далее, $f_0=\cup C$, будучи пределом цепи биекций, является биекцией. Кроме того, область определения данной биекции содержит все квадраты $\alpha\times\alpha$, т.е. по-просту совпадает с $n\times n$ (в принципе, это тоже надо доказывать). А область значений данной биекции является пределом цепи ординалов $\la<n$.

Следовательно, $f_0$ есть инъекция из $n\times n$ в $n$.

 
 
 
 Re: Бесконечные кардинальные числа
Сообщение12.04.2010, 01:44 
Аватара пользователя
$\aleph_n \aleph_n=2^{\aleph_{n-1}}* 2^{\aleph_{n-1}}=2^{(\aleph_{n-1}+\aleph_{n-1})}=2^{\aleph_{n-1}}=\aleph_n$

 
 
 
 Re: Бесконечные кардинальные числа
Сообщение12.04.2010, 03:43 
Аватара пользователя
JMH в сообщении #308657 писал(а):
$\aleph_n \aleph_n=2^{\aleph_{n-1}}* 2^{\aleph_{n-1}}=2^{(\aleph_{n-1}+\aleph_{n-1})}=2^{\aleph_{n-1}}=\aleph_n$
Во-первых, это "док-во" использует обобщённую континуум-гипотезу, в то время как утверждение верно и без неё. Во-вторых, не для любого ординала $n$ определено $n-1$. Ну и в-третьих, док-во равенства $\aleph_\alpha+\aleph_\alpha=\aleph_\alpha$ не намного проще, чем док-во исходного утверждения (впрочем, таким же способом оно "доказывается" легко).

 
 
 
 Re: Бесконечные кардинальные числа
Сообщение12.04.2010, 04:43 
Аватара пользователя
RIP в сообщении #308661 писал(а):
Во-первых, это "док-во" использует обобщённую континуум-гипотезу, в то время как утверждение верно и без неё. Во-вторых, не для любого ординала $n$ определено $n-1$. Ну и в-третьих, док-во равенства $\aleph_\alpha+\aleph_\alpha=\aleph_\alpha$ не намного проще, чем док-во исходного утверждения (впрочем, таким же способом оно "доказывается" легко).

Со вторым согласен, это меня тоже смутило, но к этому моменту я уже отправил сообщение... и не стал удалять. По поводу третьего: я так понимаю, это учебная задача, так что использовать в ней уже известные результаты не только можно, но и нужно; врядли в условии было сказано, что использовать можно только аксиоматику теории множеств.
А вот с первым пунктом не соглашусь: при чем тут континуум-гипотеза? Мы не привязываемся ни к какому конкретному множеству, а ряд мощностей всех бесконечных множеств исчерпывается кардинальными числами вида $2^{\aleph_{n}}$ (см. например Хаусдорф "Теория множеств").
Заключение: доказательство не годится по причине #2.

 
 
 
 Re: Бесконечные кардинальные числа
Сообщение12.04.2010, 10:53 
JMH в сообщении #308662 писал(а):
ряд мощностей всех бесконечных множеств исчерпывается кардинальными числами вида $2^{\aleph_{n}}$

Вот это подозрительно. Представьте в таком виде кардинал, заключённый между $\aleph_0$ и континуумом (что-то не соображу, как набрать соответствующую букву $c$).

 
 
 
 Re: Бесконечные кардинальные числа
Сообщение12.04.2010, 17:42 
Аватара пользователя
JMH в сообщении #308662 писал(а):
при чем тут континуум-гипотеза?
При том, что равенство $\aleph_{\alpha+1}=2^{\aleph_\alpha}$, которое вы используете, --- это в точности обобщённая континуум-гипотеза.

JMH в сообщении #308662 писал(а):
По поводу третьего: я так понимаю, это учебная задача, так что использовать в ней уже известные результаты не только можно, но и нужно
А кто сказал, что равенство $\mathfrak n+\mathfrak n=\mathfrak n$ --- это известный результат? Наоборот, в тех книгах по теории множеств, которые я просматривал (впрочем, их немного), этот результат выводится из равенства $\mathfrak n^2=\mathfrak n$.

 
 
 
 Re: Бесконечные кардинальные числа
Сообщение12.04.2010, 20:11 
Аватара пользователя
Если это учебная задача, то непростая. Доказательство занимает больше страницы (Куратовский, Мостовский. Теория множеств. Гл.8. $4). Видимо Кантор не смог доказать это утверждение. (Даётся ссылка на Гессенберга).

 
 
 
 Re: Бесконечные кардинальные числа
Сообщение12.04.2010, 20:46 
Аватара пользователя
Как я уже отмечал, теорема о квадрате легче всего выводится из теоремы о мощности предела цепи :) Поэтому в учебном курсе, действительно, можно строить доказательство через нее. Тут всего пара строк.

Если же хочется разобраться в сути, то нужно строить примерно по той схеме, что я привел выше, если вы (как и я) любитель ординальных чисел фон Неймана и трансфинитной рекурсии, либо заморачиваться еще каким-то способом (по-моему, Куратовский-Мостовский обходят рекурсию, но зато используют разложение ординалов по степеням меньших, что мне кажется еще более замороченным).

Ни из каких других арифметических соотношений для кардиналов, кроме очевидных и эквивалентных ему, теорема о квадрате не выводится.

Человек, наверное, хотел получить простое объяснение, но в теории множеств это редко получается :)

 
 
 
 Re: Бесконечные кардинальные числа
Сообщение12.04.2010, 23:21 
rishelie в сообщении #308517 писал(а):
Пользуемся трансфинитной индукцией. Для $n=\mathbb N$ утверждение, очевидно, истинное.
Допустим, что для любого бесконечного кардинала $k<n$ имеет место равенство $k^2=k$.


Вы проводите трансфинитную индукцию по кардинальным числам, я правильно понял? А так разве можно? :shock:

 
 
 [ Сообщений: 53 ]  На страницу 1, 2, 3, 4  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group