Хотя я никак не пойму - где эта 1/8 часть объема, вычисляемая им
А это очень легко понять, почему никак не поймёте. Вам мешает избыточная любовь к маткадному рисованию. Которое чаще всего выдаёт на поверхность нечто невразумительное. Вот и Ваши здешние картинки совершенно невнятны -- кроме одной или двух, на которых при некотором напряжении можно разглядеть искомое тело, но только если заранее знать, как оно
должно выглядеть. А это легче всего представить рисованием даже не вручную, а просто в уме.
А для составления интеграла -- ещё лучше вообще ничего не рисовать (ну или почти ничего). А действовать по стандартной схеме: попытаться получить требуемое тело обрезанием некоего вертикального цилиндра какими-то поверхностями сверху и снизу. Какими конкретно -- совершенно неважно, лишь бы эти поверхности не пересекались внутри цилиндра. Тогда пределы в тройном интеграле расставляются автоматически: внешний (двойной) интеграл берётся по основанию цилиндра, а внутренние пределы (по оси

) определяются уравнениями тех поверхностей. Для этого вовсе не нужно ничего рисовать, надо лишь чётко понимать, какое уравнение отвечает верхней поверхности, а какое нижней. Как потом расставлять пределы в двойном интеграле -- это уже дальнейшая тема, и обычно тривиальная.
Так вот: здесь ситуация вполне благоприятна для реализации этой стандартной схемы. Два горизонтальных цилиндра пересекаются по некоторой области, проекция которой на горизонтальную плоскость -- это, очевидно, квадрат. Вертикальный цилиндр проходит внутри этого квадрата, поэтому верхние и нижние ограничивающие поверхности не пересекаются внутри вертикального цилиндра. Само тело естественным образом рассекается на восемь одинаковых кусков горизонтальной плоскостью

и двумя вертикальными:

и

(это те плоскости, в которых лежат линии пересечения горизонтальных цилиндров). Для каждого из восьми кусков внешний двойной интеграл берётся по соответствующей четверти горизонтального круга, а внутренний -- от

до уравнения поверхности соотв. горизонтального цилиндра. Вот и всё.
Да, а ответ --

-- на Ваших картинках действительно присутствует. Но закопан так тщательно, что обнаружить его непросто.