хотя если рассматривать последовотельность 3 вне ее "хорошести" то ее вероятность точно такая как и у 1,2,4
Дело в том, что на 3-ем месте стоит не какая-то конкретная, чем-то выделенная, последовательность, а первая попавшаяся при бросании монет. То есть, там по сути - сумма вероятностей всех плохих... Просто потому, что у нас по условию дано, что одна и только одна из последовательностей получена однократной серией бросков монеты (если я верно понял условие). Вероятность первой, второй и третьей последовательностей - по
, а всё остальное (ну, кроме, может ещё трёх столь же красивых последовательностей, полученных инвертированием) от единицы приходится на третью.
Добавлено спустя 8 минут 50 секунд:
Насчёт красивости - это наше субъективное мнение, и решение становится возможным только потому, что наши субъективные мнения о красивости совпадают, поэтому мы
предполагаем, что автору было проще "от балды" написать регулярную последовательность, а случайную - получить броском монет.