2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3, 4, 5 ... 8  След.

Какая из последовательностей, скорее всего, была получена подбрасыванием монетки?
1 3%  3%  [ 1 ]
2 0%  0%  [ 0 ]
3 56%  56%  [ 19 ]
4 0%  0%  [ 0 ]
Нет оснований предпочесть какую-либо из этих последовательностей остальным 41%  41%  [ 14 ]
Всего голосов : 34
 
 Случайность и закономерность
Сообщение26.04.2009, 22:44 


11/10/08
171
Redmond WA, USA
Из следующих 4-х последовательностей одна была получена подбрасыванием монетки 50 раз (0 соответствует орлу, а 1 - решке), а остальные — придуманы мной.

1) 00000000000000000000000000000000000000000000000000
2) 00000000000000000000000001111111111111111111111111
3) 00111100000100110100000111010111101000111101011010
4) 01010101010101010101010101010101010101010101010101

Как вы думаете, какая из последовательностей, скорее всего, была получена подбрасыванием монетки? Почему? Какова вероятность того, что это 1-ая последовательность? 2-ая? 3-я? 4-я?

Нетрудно видеть, что априори каждая из этих последовательностей могла получиться в результате 50 бросаний монеты с вероятностью $2^{-50}$. Поэтому, казалось бы, нет причин предпочесть одну из них остальным. Однако, многие люди имеют стойкое ощущение, что именно последовательность 3 получена подбрасыванием монетки, так как является более "случайной", и даже приводят вычисления в поддержку этого взгляда. Какой же взгляд является правильным?

 Профиль  
                  
 
 
Сообщение26.04.2009, 23:05 
Заморожен
Аватара пользователя


18/12/07
8774
Новосибирск
А я не верю, что Вы действительно монетку бросали. Написали какие-то четыре последовательности "от балды" :)

 Профиль  
                  
 
 
Сообщение26.04.2009, 23:10 


11/10/08
171
Redmond WA, USA
Профессор Снэйп писал(а):
А я не верю, что Вы действительно монетку бросали. Написали какие-то четыре последовательности "от балды" :)


В этом состоит условие задачи. Вы же не говорите "А я не верю, что у Васи было 3 яблока!".
А вообще, я бросал монетку 50 раз, честное слово. :)

 Профиль  
                  
 
 
Сообщение26.04.2009, 23:18 
Заслуженный участник
Аватара пользователя


13/08/08
14495
Есть интересная статья Арнольда на эту тему. По-моему, обсуждалась осенью.

 Профиль  
                  
 
 
Сообщение27.04.2009, 01:25 
Заслуженный участник
Аватара пользователя


11/12/05
10078
gris писал(а):
Есть интересная статья Арнольда на эту тему. По-моему, обсуждалась осенью.


Можете дать ссылку?

 Профиль  
                  
 
 
Сообщение27.04.2009, 05:33 
Экс-модератор


17/06/06
5004
nikov в сообщении #208506 писал(а):
Однако, многие люди имеют стойкое ощущение, что именно последовательность 3 получена подбрасыванием монетки, так как является более "случайной", и даже приводят вычисления в поддержку этого взгляда.
Интересно было бы посмотреть на вычисления.

А вообще люди как бы не понимают, что последовательность 3 не менее уникальна, чем все остальные.

 Профиль  
                  
 
 
Сообщение27.04.2009, 08:39 
Заслуженный участник
Аватара пользователя


13/08/08
14495
Если подходить к ответу на Ваш вопрос с адской хладнокровностью (прилагательное адский не имеет прямого отношения к нику некого уважаемого участника форума, так что прошу модераторов не волочь меня в ящик с гвоздями), тогда да, никаких предпочтений у первой, второй, четвёртой или третьей последовательности нет.

Но.

Рассмотрим психологический аспект вопроса, вернее, опроса. С чего это ув. nikov его затеял? Обыденно-логично предположить, что в его жизни произошло некое событие. О каком событии стоит рассказывать людям и ждать от них удивления и радости? Событие должно быть не только маловероятным, но и действительно удивительным именно с точки зрения восприятия.

От нечего делать или в порядке научного эксперимента я начинаю подбрасывать монетку. И у меня выпадает 50 орлов подряд. Вначале я усмехаюсь и рассматриваю монетку. Самая обычная. Вот лично я уж точно испугаюсь. Может быть даже и перекрещусь. И обязательно сообщу об этом (о монетке) миру.

Да просто представьте, скептики, что вы сидите за компом, слушаете музычку и бездумно теребите ну, скажем, клавиатуру. И вдруг на экране появляются слова "займись делом наконец". Первая реакция будет, что это происки админа, вирус, розыгрыш. Но если Вы уверены в непорочности Вашего маленького тёплого дружка (компьютера), то на Вас нападёт страх. Хотя комбинация равновероятна с любой другой, ну если не учитывать расположение клавиш и индивидуальные особенности пальцевой системы.

Поэтому я предполагаю, что ув. nikov баловался с монеткой, получил удивительный результат и поведал о нём миру. С его личной точки зрения удивительным результатом может быть и третий, так как в нём закодирована возможно дата его рождения. Но с точки зрения обывателя, удивительным будет первый результат.

Голосую за 1. Увы, ранее проголосовал за 3.

Рассмотрим вопрос с чисто практической точки зрения. Предположим, игра на деньги состоит в угадывании 50-битовых серий, полученных с помощью идеальной монетки. Тогда у меня должен быть некий алгоритм, по которому я буду выделять такие серии. Не хочу наивно и косноязычно повторять то, что уже сказано Великими Математиками. Но попробую. Чисто интуитивно у среднего человека будет работать такой алгоритм: для каждой серии можно придумать закономерность расположения нулей и единиц. Чем больше мысленных усилий затрачено на выявление такой закономерности, тем более вероятно, что серия получена с помощью монетки, а не создана специально.

Человек, который по своему алгоритму выберет ответ 3, в длинной игре выиграет больше денег, чем тот, который выберет 1.

Голосую за 3.

Ув. Dan B-Yallay! Я точно скачивал и бегло читал статью Арнольда. Но она у меня не сохранилась. И я уже не помню, где я её брал. В гугле есть ссылки на его статьи, статьи Колмогорова и Успенского. Но Арнольд именно этот вопрос рассматривал - почему с некоторой точки зрения некоторые последовательности более "вероятны"

 Профиль  
                  
 
 
Сообщение27.04.2009, 08:55 
Заблокирован
Аватара пользователя


16/12/08

467
Краснодар
Вероятность первой $p=2^{-50}$
Вероятность второй $p=2*2^{-50}=2^{-49}$, т.к. их может быть две (нули вначале, единицы вначале)
Вероятность третьей $p=2^{50}*2^{-50}=1$, т.к. произвольных распределений нулей и единиц $2^{50}$, а вы выбрали одно из них.
Вероятность четвертой как и у второй (начинается с нуля или с единицы).
Если же выбрать вероятность третей последовательности именно такой, что исходы поделились поровну $25/25$, то вероятность такой случайной последовательности будет $p=c_{50}^{25}*2^{-50}=0,112275$

 Профиль  
                  
 
 
Сообщение27.04.2009, 09:04 
Экс-модератор


17/06/06
5004
Мат в сообщении #208580 писал(а):
Вероятность второй $p=2*2^{-50}=2^{-49}$, т.к. их может быть две (нули вначале, единицы вначале)
Я в детстве думал, что у меня два папы. Один - который утром уходит на работу, другой - который приходит вечером.
Думаю, это мое убеждение было более правильно. :roll:

Добавлено спустя 1 минуту 52 секунды:

Мат в сообщении #208580 писал(а):
Вероятность третьей $p=2^{50}*2^{-50}=1$, т.к. произвольных распределений нулей и единиц $2^{50}$, а вы выбрали одно из них.
Итак, научно установлено, что при подбрасывании монетки последовательность 00111100000100110100000111010111101000111101011010 выпадает с вероятностью 1. То есть почти всегда. Надо проверить как-нибудь на досуге. А то вдруг существование матрицы удастся доказать? (Ну типа архитектор напортачил с генератором случайных чисел)

Добавлено спустя 1 минуту 42 секунды:

gris в сообщении #208578 писал(а):
прилагательное адский не имеет прямого отношения к нику некого уважаемого участника форума, так что прошу модераторов не волочь меня в ящик с гвоздями
Именно из этих соображений в свое время было придумано политкорректное слово "аццкий" :lol1:

 Профиль  
                  
 
 Re: Случайность и закономерность
Сообщение27.04.2009, 09:18 


20/04/09
71
nikov писал(а):
Из следующих 4-х последовательностей одна была получена подбрасыванием монетки 50 раз (0 соответствует орлу, а 1 - решке), а остальные — придуманы мной.

1) 00000000000000000000000000000000000000000000000000
2) 00000000000000000000000001111111111111111111111111
3) 00111100000100110100000111010111101000111101011010
4) 01010101010101010101010101010101010101010101010101

Как вы думаете, какая из последовательностей, скорее всего, была получена подбрасыванием монетки? Почему? Какова вероятность того, что это 1-ая последовательность? 2-ая? 3-я? 4-я?

Нетрудно видеть, что априори каждая из этих последовательностей могла получиться в результате 50 бросаний монеты с вероятностью $2^{-50}$. Поэтому, казалось бы, нет причин предпочесть одну из них остальным. Однако, многие люди имеют стойкое ощущение, что именно последовательность 3 получена подбрасыванием монетки, так как является более "случайной", и даже приводят вычисления в поддержку этого взгляда. Какой же взгляд является правильным?


На МЛФ нас учили, что "Случайность - это непознанная закономерность".
После чего хотелось добавить: "И чем непознаннее, тем случайнее". :D
Только какое отношение это имеет к ТВ и к математике вообще???

 Профиль  
                  
 
 
Сообщение27.04.2009, 10:20 


07/09/07
463
Тут идет некоторая игра точек отсчета. Две точки отсчета.
Первая: дана ОДНА последовательность, с какой вероятностью мы ее получим? ответ такой, что 1),2),3),4) - имеют одинаковую вероятность.
Вторая: Имеем НАБОР последовательностей. Тут внимание незаметно для нас переносится на "какая вероятность получить последовательность со свойством Х".
Тоесть, если НАБОР последовательностей, то важна вероятность обнаружить у последовательности свойство Х.

Свойств можно придумать очень много. Когдато занимался вопросом оценки качества генератора случайных последовательностей. Есть стандарты, в одном из них 16 различных свойств, по которым проверяется случайность.
Примеры свойств:
Например, делаем серию подкидываний монетки по N раз.
1. Какова вероятность такой последовательности, что в ней |количество нулей - количество единиц| > N/3.?
2. Какова вероятность того, что будут все нули?
3. Какова вероятность того, что нулей и единиц поровну?
4. Какова вероятность того, что длина повторяющегося шаблона равна 2? (как в последовательности 4)
5. Какова вероятность того, что в последовательности будет непрерывная серия из M единиц?
Ну и так далее...
С этой точки зрения наиболее правдоподобной является последовательность 3).

 Профиль  
                  
 
 
Сообщение27.04.2009, 10:24 


20/04/09
71
+ и еще куча тестов, которыми тестируются ГСЧ...
И которые порождаются "соображениями здравого смысла"
:)

 Профиль  
                  
 
 
Сообщение27.04.2009, 10:58 
Экс-модератор


17/06/06
5004
STilda в сообщении #208595 писал(а):
С этой точки зрения наиболее правдоподобной является последовательность 3).
Ну и остановились на самом интересном месте. :( Почему же она наиболее правдоподобна? Вы собираетесь оценивать количество свойств, которыми она обладает?

P.S. А еще я слышал про некоторое количество теорем, начинающихся со слов "типичная функция". Скажем, "Типичная непрерывная функция $f:[0,1]\to\mathbb{R}$ нигде не дифференцируема и принимает все свои значения несчетное число раз". Может, расскажет кто-нибудь - это всего лишь означает "с вероятностью 1 на некотором естественном вероятностном пространстве $C[0,1]$", типа там мера Винера какая-нибудь - или что-то более интересное?

 Профиль  
                  
 
 
Сообщение27.04.2009, 12:08 
Заслуженный участник
Аватара пользователя


23/07/05
17989
Москва
Если не ошибаюсь, слово "типичная" в этой теореме означает, что функции, дифференцируемые хотя бы в одной точке, образуют в $C[0,1]$ множество первой категории (объёдинение счётного числа нигде не плотных множеств). Видимо, то же самое относится и к функциям, которые какое-нибудь значение принимают конечное или счётное число раз, но я об этой теореме не слышал.

 Профиль  
                  
 
 
Сообщение27.04.2009, 14:08 


11/10/08
171
Redmond WA, USA
AD писал(а):
nikov в сообщении #208506 писал(а):
Однако, многие люди имеют стойкое ощущение, что именно последовательность 3 получена подбрасыванием монетки, так как является более "случайной", и даже приводят вычисления в поддержку этого взгляда.
Интересно было бы посмотреть на вычисления.


Ну, например, для всех последовательностей вычисляется среднее количество одинаковых положений монеты подряд. И оказывается, что именно у последовательности 3 оно наиболее близко к теоретическому матожиданию этой величины у случайной последовательности.

Добавлено спустя 3 минуты 1 секунду:

STilda писал(а):
Ну и так далее...
С этой точки зрения наиболее правдоподобной является последовательность 3).


Ну и какая же вероятность, что именно эта последовательность из четырех получена подбрасыванием монетки?

Добавлено спустя 1 минуту 21 секунду:

Re: Случайность и закономерность

Schraube писал(а):
Только какое отношение это имеет к ТВ и к математике вообще???


А к чему же еще?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 110 ]  На страницу 1, 2, 3, 4, 5 ... 8  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Gagarin1968


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group