2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5, 6  След.
 
 Re: Как направить длину вектора?
Сообщение25.09.2024, 15:34 
А я и не требовал выполнения аксиом метрики. Вопрос был другой.
Mihr в сообщении #1656052 писал(а):
Следуя Вашей просьбе, выхожу из обсуждения.

Спасибо.

 
 
 
 Re: Как направить длину вектора?
Сообщение25.09.2024, 16:08 
Аватара пользователя
Andante в сообщении #1656029 писал(а):
Теперь понятно. Но это не я придумал, а Минковский, я пытаюсь разобраться. Поможете?
Не знаю, скорее - запутаю. Длина вектора - это то, что сохраняется при поворотах то ли вектора, то ли системы координат. В СТО, при преобразованиях координат и времени, в одномерном пространстве должна сохраняться величина
$s^2=c^2t^2-y^2.$
обозначив $ct=x$ получим Вашу формулу. "Поворот", сохраняющий такую величину, гиперболический и должен иметь вид
$x'=\ch(\alpha) x+\sh(\alpha) y$
$y'=\ch(\alpha) y+\sh(\alpha )x.$
В незапамятные времена вводили мнимое время для того, чтобы формулы для скалярного произведения имели одинаковый вид (покомпонентное перемножение). Теперь от этого отказались.

 
 
 
 Re: Как направить длину вектора?
Сообщение25.09.2024, 19:29 
Распутаемся, я надеюсь, но надо начать.
Так далеко, чтобы определять формулу поворота, я не заходил, у меня было сомнение что вообще надо поворачивать. Если повернуть ось координат, только одну, сломаем систему координат?

 
 
 
 Re: Как направить длину вектора?
Сообщение25.09.2024, 19:38 
Аватара пользователя
Andante в сообщении #1656072 писал(а):
Так далеко, чтобы определять формулу поворота, я не заходил
Но хоть за забор заходили? Или до сих пор доверяете надписи?

 
 
 
 Re: Как направить длину вектора?
Сообщение25.09.2024, 20:51 
Аватара пользователя
Andante в сообщении #1656072 писал(а):
Если повернуть ось координат, только одну, сломаем систему координат?
Крутите пока вектор. У Вас в руках палка. Как ее не крутить, длина ее, измеренная рулеткой, будет одинаковая. Тоже с интервалом. Если его "гиперболически крутить", он останется неизменным. Из этого, при некоторой сноровке, можно получить преобразования Лоренца, относительность одновременности и прочие материи, с которыми сюда заходят ниспровергатели теории относительности.

 
 
 
 Re: Как направить длину вектора?
Сообщение26.09.2024, 09:42 
Аватара пользователя
Andante в сообщении #1656029 писал(а):
А разве длина вектора и расстояние от начала до конца не одно и то же?


Чтобы определить длину отрезка между точками $x_1, y_1$ и $x_2, y_2$, надо использовать $d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$, а не $|z|=\sqrt{x^2-y^2}$

 
 
 
 Re: Как направить длину вектора?
Сообщение26.09.2024, 10:22 
Аватара пользователя
Евгений Машеров
Это только длина вектора. А вот, как её направить? :mrgreen:

 
 
 
 Re: Как направить длину вектора?
Сообщение26.09.2024, 13:26 
Аватара пользователя
Andante в сообщении #1656016 писал(а):
мнимость числа геометрически изображается не длиной вектора, а его направлением, перпендикулярно выбранной действительной числовой оси. Длина вектора z с мнимостью числа z не связана


Вы путаете свойство и графическую иллюстрацию данного свойства.

 
 
 
 Re: Как направить длину вектора?
Сообщение26.09.2024, 16:37 
Аватара пользователя
Кстати, графическое решение "направления длины вектора" достаточно просто. Нужно только пририсовать к "длине вектора" стрелочку.

 
 
 
 Re: Как направить длину вектора?
Сообщение28.09.2024, 06:07 
Евгений Машеров в сообщении #1656161 писал(а):
Вы путаете свойство и графическую иллюстрацию данного свойства.

Я не путаю, а изображаю комплексное число вектором (как это делать написано на стр. 5 в [Дубровин В.Т. Теория функций комплексного переменного (теория и практика): Учебное пособие / В.Т. Дубровин. – Казань: Казанский государственный университет, 2010. — 102 с.]). Ставлю в соответствие числу вектор, действительной и мнимой частям числа проекции вектора на действительную и мнимую оси координат и делаю вывод, что мнимость числа изображается направлением вектора, а между мнимостью числа и длиной вектора соответствия нет.
Когда мне предлагают в двумерном пространстве знакопеременную метрику и равенство длины вектора мнимой единице это значит, что числу $i$ соответствует не вектор целиком, а только его длина. По сделанному выводу я должен повернуть её, но не понимаю как это сделать, может быть, ошибся где-то в рассуждениях, но где?

-- Сб сен 28, 2024 06:22:55 --

amon в сообщении #1656058 писал(а):
"Поворот", сохраняющий такую величину, гиперболический

Да нет, не так. Из двух осей координат одна действительная, поэтому образующий её вектор остаётся без изменений, поворачивать надо только второй вектор. И если систему без поворота изображают диаграммой минковского в прямоугольной системе координат, тогда после поворота система будет какой-то другой и я себе не представляю такой результат, он всё сломает. Так не годится.

 
 
 
 Re: Как направить длину вектора?
Сообщение28.09.2024, 08:51 
Аватара пользователя
Ну, так Вы и сами понимаете, что это - изображение. А не изображаемое. Хорошее изображение, но изображение.

 
 
 
 Re: Как направить длину вектора?
Сообщение28.09.2024, 09:53 
Евгений Машеров в сообщении #1656396 писал(а):
Ну, так Вы и сами понимаете, что это - изображение. А не изображаемое. Хорошее изображение, но изображение.

Если изображение хорошее, то как вы предлагаете его построить, вращая длину вектора отдельно от вектора или вместе с ним?

 
 
 
 Re: Как направить длину вектора?
Сообщение28.09.2024, 09:58 
Andante в сообщении #1656399 писал(а):
вращая длину вектора отдельно от вектора или вместе с ним?

Лучшие результаты достигаются при вращении длины вектора под углом $42^{\circ}$ к самому вектору. Попробуйте.

 
 
 
 Re: Как направить длину вектора?
Сообщение28.09.2024, 12:07 
Пробовал, не получается,поэтому начал тему. Можете научить?

 
 
 
 Re: Как направить длину вектора?
Сообщение28.09.2024, 13:24 
Аватара пользователя
Длина - скаляр. Она не вращается.

 
 
 [ Сообщений: 79 ]  На страницу Пред.  1, 2, 3, 4, 5, 6  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group