2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3  След.
 
 Re: Скорость прохождения горизонта черной дыры
Сообщение12.06.2024, 18:21 


17/10/16
5060
lazarius
Горизонт ЧД - это практически то же самое, что и горизонт ускоренного наблюдателя. С небольшой поправкой на кривизну пространства-времени вокруг ЧД, которая ничего принципиально нового в вопрос о горизонте не вносит. Можете считать горизонт ускоренного наблюдателя пределом горизонта ЧД, когда масса последней и ее гравитационный радиус стремятся к бесконечности.

 Профиль  
                  
 
 Re: Скорость прохождения горизонта черной дыры
Сообщение13.06.2024, 00:51 
Заслуженный участник


29/09/14
1265
lazarius
Привожу вычисление, которое делаю на основе того, что когда-то я прочитал в трёхтомнике "Гравитация" (авторы: Мизнер, Торн, Уилер (МТУ)). Этого мне достаточно для ответа на ваш вопрос о скорости свободного падения пробного тела на горизонт в метрике Шварцшильда. (Удовлетворят ли Вас эти выкладки, не знаю).

(Вычисление:)

Интересуемся 3-мерной пространственной окрестностью точки с фиксированной радиальной координатой $r=r_0 > r_s.$ Координатное время $t$ считаем переменной величиной; с течением $t$ указанная окрестность "заметает" в пространстве-времени 4-мерную область. Квадрат бесконечно малого интервала в пространстве-времени с метрикой Шварцшильда запишем в следующем виде (в окрестности точки $r_0),$ для краткости полагая $c=1:$
$$(ds)^2 = (d\tau_0)^2-(dl)^2 ,$$ где $$(d\tau_0)^2=\,g_{tt}\,(dt)^2,\qquad (dl)^2=\,-g_{rr}\,(dr)^2-g_{\theta \theta}\,(d\theta)^2-g_{\varphi \varphi}\, (d\varphi)^2,$$ компоненты метрического тензора в точке $r=r_0:$ $$g_{tt}=1-r_s/r_0\,,\qquad g_{rr}=-(1-r_s/r_0)^{-1},\qquad g_{\theta \theta}=-r_0^2\, ,\qquad g_{\varphi \varphi}=-r_0^2\sin^2\theta\,.$$
Смысл величин $d\tau_0$ и $dl$ вот какой. Представим себе, что в точке $r_0$ покоится наблюдатель (он не падает на горизонт, а висит над горизонтом благодаря своим постоянно работающим ракетным двигателям). Тогда, поскольку его координаты постоянны, на всех участках его мировой линии в пространстве-времени имеем $dl=0$ и $ds=d\tau_0.$ Т.е. $\tau_0$ это его собственное время. Другими словами, $\tau_0$ это показания стандартных часов, покоящихся в точке $r_0.$ При $d\tau_0=0$ имеем $-(ds)^2=(dl)^2>0$ на бесконечно малых отрезках пространственных линий в окрестности точки $r_0,$ т.е. $dl$ это их собственные длины.

Значит, если пробное тело подлетит к точке $r_0,$ пройдя за время $d\tau_0$ (по часам упомянутого наблюдателя) расстояние $dl,$ то квадрат мгновенной скорости пробного тела в точке $r_0$ в системе покоя наблюдателя будет $$v^2=\left( \frac{dl}{d\tau_0} \right )^2.$$ Вот эту величину и предстоит вычислить.

Метрика Шварцшильда обладает симметриями: она изотропна, а также статична - инвариантна к сдвигам по $t,$ потому что компоненты метрического тензора, как видим, не зависят от $t.$ В ОТО доказывается, что симметрии пространства-времени приводят к сохранению (к неизменности значений) некоторых величин вдоль геодезических пространства-времени.

Нам будет важна одна из таких величин (она сохраняется вследствие статичности метрики): $\mathbf{u}\cdot \mathbf{e}_t\,,$ где $\mathbf{u}$ - касательный вектор (4-скорость) геодезической в любой её точке, $\mathbf{e}_t$ - временной орт системы координат в той же пространственно-временной точке, символ $\cdot$ между 4-векторами означает их скалярное произведение, определяемое компонентами метрического тензора в той же точке. Компоненты орта $\mathbf{e}_t$ есть $1,0,0,0,$ т.е. только одна компонента $e_t=1$ отлична от нуля, поэтому $$\mathbf{u}\cdot \mathbf{e}_t=u_t \, g_{tt} \,e_t=g_{tt} \,u_t=g_{tt}\,\frac{dt}{d\tau},$$ где $d\tau$ - интервал собственного времени на участке с точкой $P$ рассматриваемой геодезической.

В ОТО известно, что мировая линия свободно падающего тела это времениподобная геодезическая. Рассмотрим падение из бесконечно удалённой (от горизонта) точки. В бесконечно далёкой области ($r\to\infty)$ метрика Шварцшильда сводится к обычной метрике СТО, там
$$g_{tt}\to 1\,,\qquad \dfrac{dt}{d\tau}\to\dfrac{1}{\sqrt{1-v_{\infty}^2}}\,,$$
где $v_{\infty}$ - начальная скорость пробного тела на бесконечности (с произвольно заданным значением $0\le v_{\infty}<1).$ Таким образом, в любой точке мировой линии свободно падающего пробного тела выполняется равенство $$g_{tt}\,\frac{dt}{d\tau}=\frac{1}{\sqrt{1-v_{\infty}^2}}\,.$$ Нам понадобится следующее из него равенство:

$$\left(\frac{d\tau}{d\tau_0}\right)^2=\,\frac{1}{g_{tt}}\left(\frac{d\tau}{dt}\right)^2=g_{tt}\,(1-v_{\infty}^2)\,.$$

Предположим теперь, что точка $r_0$ была выбрана вблизи горизонта, и рассмотрим участок мировой линии нашего пробного тела, который ведёт в эту точку. На нём $(ds)^2$ имеет смысл квадрата интервала собственного времени пробного тела: $(ds)^2=(d\tau)^2.$ То есть: $$(d\tau)^2=\,(d\tau_0)^2-(dl)^2\,.$$ Разделив это равенство на $(d\tau_0)^2,$ находим из него

$$v^2 = \left(\frac{dl}{d\tau_0}\right)^2 = 1-\left(\frac{d\tau}{d\tau_0}\right)^2=1-g_{tt}\,(1-v_{\infty}^2)\,.$$
В пределе с $r_0\to r_s$ имеем $g_{tt}\to 0$ и, как видим, $v^2\to 1.$ Это и означает, что скорость свободно падающего на горизонт пробного тела, наблюдаемая неподвижным наблюдателем в самой-самой близости к горизонту, стремится к скорости света.

 Профиль  
                  
 
 Re: Скорость прохождения горизонта черной дыры
Сообщение13.06.2024, 09:00 


27/10/23
78
Честно скажу - мне не удалось основательно изучить ваши выкладки по нескольким причинам.

Вы используете непривычную мне сигнатуру но даже я увидел что у вас в последнем члене знак не совпадает с тем что у меня в двух книжках с такой сигнатурой. Мы понимаем что последние два не имеют отношения к тому что мы обсуждаем и замнем этот вопрос.

Вы используете факты (сохранение некоторых величин) которые мне неизвестны. Но мы пытаемся идти дальше.

Cos(x-pi/2) в сообщении #1642432 писал(а):
Рассмотрим падение из бесконечно удалённой (от горизонта) точки.

Вот как раз этот случай неинтересен. Если вы перечитаете мое исходное сообщение то увидите что в этом пределе и у меня получается скорость света. :(

Но по-крайней мере первый раз в этой теме кто-то отнесся к вопросу серьезно и я помню что вы помогли мне с вопросом по квантовой механике. Поэтому я предъявляю свой расчет.

Так как мы рискуем получить скорость света то имеет смысл рассматривать наоборот - движение горизонта относительно тела с массой. И как я писал во втором сообщении именно так формулировалось исходное утверждение - горизонт проносится мимо астронавта со скоростью света.

Я тоже не намерен идти от сотворения мира и даю исходные формулы. Выше уже была картинка из книжки поэтому вторая из той же:

Изображение

Уравнение 12.10 отсюда мы берем за исходную точку. Далее мы берем выражение для потенциала 11.14 из предыдущей картинки и переписываем это в следующем виде:

$\displaystyle e^{2\Phi/c^2} + \frac{1}{c^2}\left(\frac{dr}{d\tau}\right)^2 = e^{2\Phi_0/c^2}$

Мы раскрыли запись производной и здесь $r$ - координата Шварцшильда а $\tau$ - собственное время в системе свободно падающего тела. Я вернул в формулу $c^2$. В правой части мы так записали $2E + 1$.

Если бы я взял за исходную точку формулы из книжки по которой изучаю эту тему, это не пришлось бы объяснять но я не уверен что книжку Andrew Steane здесь посчитают надежным источником. Автор этой книжки - Wolfgang Rindler и я ее еще не изучал. Но из текста после 12.10 видно что автор рассматривает это как закон сохранения, очевидно что "скорость" равна нулю в исходной точке и мне кажется это достаточное обоснование того что $\Phi_0$ - потенциал в исходной точке.

Далее то же самое в профиль:

$\displaystyle \left(\frac{dr}{d\tau}\right)^2 = c^2(e^{2\Phi_0/c^2} - e^{2\Phi/c^2})$

Осталось из этой "скорости" получить физическую в системе падающего тела.

$\displaystyle \frac{dl}{d\tau} = \frac{dl}{dl_s}\frac{dl_s}{dr}\frac{dr}{d\tau}$

Здесь $dl_s$ - элемент длины в системе отсчета Шварцшильда:

$\displaystyle \frac{dl_s}{dr} = (1 - 2m/r)^{-1/2} = e^{-\Phi/c^2}$

$dl$ - тот же элемент наблюдаемый из системы падающего тела (Лоренц-сокращенный):

$\displaystyle \frac{dl}{dl_s} = e^{(\Phi - \Phi_0)/c^2}$

Результат:

$\displaystyle v^2 = \left(\frac{dl}{d\tau}\right)^2 = c^2(1 - e^{2(\Phi-\Phi_0)/c^2})$

И мы уже видели что эта же формула работает в случае метрики Риндлера если подставить соответствующее выражение для потенциала.

 Профиль  
                  
 
 Re: Скорость прохождения горизонта черной дыры
Сообщение13.06.2024, 11:00 
Заслуженный участник
Аватара пользователя


30/01/09
7149
lazarius в сообщении #1642453 писал(а):
Вот как раз этот случай неинтересен. Если вы перечитаете мое исходное сообщение то увидите что в этом пределе и у меня получается скорость света. :(

Простые интуитивные рассуждения показывают, что этого достаточно. Зафиксируем некую точку $A$ вдали от чёрной дыры. И выберем некую материальную точку $B$ с конечной массой вблизи горизонта чёрной дыры . Допустим, нам надо затратить некую энергию на перемещение этой точки на бесконечное расстояние от ЧД. Допустим, мы доказали, что эта энергия стремится к бесконечности при приближении точки $B$ к горизонту ЧД. Поскольку энергия на перемещение нашей материальной точки из точки $A$ в бесконечность конечна, то отсюда следует, что и энергия перемещения точки $B$ в точку $A$ тоже стремится к бесконечности. А вот если бы этот предел был конечный, то это было контринтуитивно, поскольку мы знаем, что покинуть чёрную дыру невозможно.

 Профиль  
                  
 
 Re: Скорость прохождения горизонта черной дыры
Сообщение13.06.2024, 11:26 
Аватара пользователя


22/07/11
893
Cos(x-pi/2) в сообщении #1642432 писал(а):
Это и означает, что скорость свободно падающего на горизонт пробного тела, наблюдаемая неподвижным наблюдателем в самой-самой близости к горизонту, стремится к скорости света.
Но событие пересечения горизонта телом для этого наблюдателя, как и для любого другого, независимо от его близости к горизонту, не произойдет НИКОГДА. Поэтому вопрос о скорости пересечения не имеет смысла. :D

 Профиль  
                  
 
 Re: Скорость прохождения горизонта черной дыры
Сообщение13.06.2024, 11:34 
Заслуженный участник
Аватара пользователя


01/09/13
4711
lazarius в сообщении #1642453 писал(а):
Вот как раз этот случай неинтересен.

А вот если бы Вы посмотрели выкладки чуть внимательнее, то заметили бы, что все формулы и рассуждения описывают общий случай. Просто случаю падения с нулевой скоростью из конечной точки соответствует $v_\infty^2<0$.

-- 13.06.2024, 11:41 --

lazarius в сообщении #1642453 писал(а):
Далее мы берем выражение для потенциала 11.14 из предыдущей картинки и переписываем это в следующем виде:

$\displaystyle e^{2\Phi/c^2} + \frac{1}{c^2}\left(\frac{dr}{d\tau}\right)^2 = e^{2\Phi_0/c^2}$

На "предыдущей картинке" не было ничего похожего на эту формулу.

 Профиль  
                  
 
 Re: Скорость прохождения горизонта черной дыры
Сообщение13.06.2024, 13:12 


17/10/16
5060
lazarius
Да, у Cos(x-pi/2) именно общий случай радиального падения рассматривается.

 Профиль  
                  
 
 Re: Скорость прохождения горизонта черной дыры
Сообщение13.06.2024, 13:30 


27/10/23
78
lazarius в сообщении #1642453 писал(а):
$dl$ - тот же элемент наблюдаемый из системы падающего тела (Лоренц-сокращенный):

$\displaystyle \frac{dl}{dl_s} = e^{(\Phi - \Phi_0)/c^2}$

На самом деле это уже есть конечная формула. То есть из того, что гравитационное замедление времени равносильно Лоренц-замедлению между соответствующими LIF, следует:

$\displaystyle \gamma = e^{(\Phi_0 - \Phi)/c^2}$

-- 13.06.2024, 13:34 --

sergey zhukov в сообщении #1642477 писал(а):
Да, у Cos(x-pi/2) именно общий случай радиального падения рассматривается.

Я попробую почитать еще раз.

 Профиль  
                  
 
 Re: Скорость прохождения горизонта черной дыры
Сообщение13.06.2024, 16:30 


27/10/23
78
sergey zhukov в сообщении #1642477 писал(а):
Да, у Cos(x-pi/2) именно общий случай радиального падения рассматривается.

Как же вы меня достали! Вы и Geen. Показываю.

Cos(x-pi/2) в сообщении #1642432 писал(а):
где $v_{\infty}$ - начальная скорость пробного тела на бесконечности (с произвольно заданным значением $0\le v_{\infty}<1$).

Этот вывод как будто специально был написан так чтобы его было трудно читать. :) Давайте возьмем произвольно 0 - тело там на бесконечности покоится.

Cos(x-pi/2) в сообщении #1642432 писал(а):
$$\left(\frac{d\tau}{d\tau_0}\right)^2=\,\frac{1}{g_{tt}}\left(\frac{d\tau}{dt}\right)^2=g_{tt}\,(1-v_{\infty}^2)\,.$$

Соответственно здесь:

$\displaystyle \left(\frac{d\tau}{d\tau_0}\right)^2=g_{tt}$

Производная равна ровно единице в точке где мы из состояния покоя отпускаем астронавта в его последнее путешествие. А $g_{tt}$ стремится к единице только на бесконечности. Правильная формула выглядит так:

$\displaystyle \frac{1}{\gamma^2} = \frac{g_{tt}}{g_{tt}(0)}$

 Профиль  
                  
 
 Re: Скорость прохождения горизонта черной дыры
Сообщение13.06.2024, 16:43 


17/10/16
5060
lazarius
Так я не понял, вы против вывода Cos(x-pi/2) или за? Считаете, что там что-то неправильно или нет?

 Профиль  
                  
 
 Re: Скорость прохождения горизонта черной дыры
Сообщение13.06.2024, 19:13 
Заслуженный участник
Аватара пользователя


01/09/13
4711
lazarius в сообщении #1642495 писал(а):
Как же вы меня достали! Вы и Geen.

Смените форум.
Вам 5 человек сказали как правильно, и как это понять без всяких расчётов вообще. Один даже привёл расчёты с объяснением каждого шага.
Т.е. сделали даже больше, чем Вы спрашивали.
Вы же, в ответ, продолжаете вбрасывать формулы, которые, по Вашим же словам, не подлежат обсуждению....
Троллинг.

 Профиль  
                  
 
 Re: Скорость прохождения горизонта черной дыры
Сообщение14.06.2024, 03:55 


27/10/23
78
lazarius в сообщении #1642244 писал(а):
$ \displaystyle v^2 = c^2 (1 - e^{2(\Phi - \Phi_0)/c^2}) $,

где $\Phi$ - гравитационный потенциал $e^{2\Phi/c^2} = 1 - r_s/r$, и $\Phi_0$ - гравитационный потенциал в точке начала падения. То есть эта скорость равна скорости света только в предельном случае когда тело падает из бесконечно удаленной точки где $\Phi_0 = 0$.

Если подставить $r = r_s$, то $v^2=c^2$ независиомо от значения $\Phi_0$.

 Профиль  
                  
 
 Re: Скорость прохождения горизонта черной дыры
Сообщение14.06.2024, 05:05 


27/10/23
78
sergey zhukov в сообщении #1642497 писал(а):
Так я не понял, вы против вывода Cos(x-pi/2) или за? Считаете, что там что-то неправильно или нет?

В этом выводе делается попытка перенести начальные условия в бесконечность. То есть случай когда астронавт из состояния покоя отпускается в последнее путешествие на конечном расстоянии от горизонта смоделировать конечной скоростью на бесконечности. Но тогда на бесконечности скорость может быть направлена как в одну, так и в другую сторону. И при этом для очевидно разных начальных условий получится одинаковый результат не только на горизонте но и на всей траектории до него. Просто потому что в формуле скорость в квадрате:

$\displaystyle \left(\frac{d\tau}{d\tau_0}\right)^2=g_{tt}\,(1-v_{\infty}^2)$

Вы конечно можете как Geen рассматривать $v_{\infty}^2 < 0$, но мне очевидно что эта формула ошибочна. Правильную формулу я уже представил:

$\displaystyle 1 - v^2/c^2 = \frac{g_{tt}}{g_{tt}(0)}$

 Профиль  
                  
 
 Re: Скорость прохождения горизонта черной дыры
Сообщение14.06.2024, 05:53 
Заслуженный участник


29/09/14
1265
Geen в сообщении #1642467 писал(а):
все формулы и рассуждения описывают общий случай. Просто случаю падения с нулевой скоростью из конечной точки соответствует $v_\infty^2<0$.
Верно.

$1/(1-v_{\infty}^2)=E^2.$ Сохраняющаяся на времениподобной геодезической величина $E=\mathbf{u}\cdot\mathbf{e}_t$ имеет смысл энергии, делённой на массу $\mu$ (или на $\mu c^2,$ если писать $c$ явно) свободно падающего пробного тела. Если $E\ge 1,$ то тело может падать из бесконечности, и (если не проваливается под горизонт) может улететь на бесконечность; тогда $E$ выражается через реальную скорость на бесконечности. При $E<1$ это не так, но мы и не обязаны пользоваться параметром $v_{\infty}^2,$ в любом случае достаточно задавать $E.$ То, что случай $E\ge 1$ совсем не интересует ТС, я не заметил и выбрал для пояснения этот случай, чтобы смысл постоянной $\mathbf{u}\cdot\mathbf{e}_t$ был понятнее.


sergey zhukov в сообщении #1642477 писал(а):
именно общий случай радиального падения рассматривается.
Не только радиального. Наряду с $E$ сохраняется $(-\mathbf{u}\cdot\mathbf{e}_{\varphi})=L,$ это момент импульса, делённый на массу $\mu$ пробного тела (или на $\mu c,$ если пишем $c$ явно, так что $L$ имеет размерность длины). При $L\neq 0$ движение не радиальное. В зависимости от заданных $L,$ $E$ и начального $r$ возможны разные типы траекторий пробного тела (в том числе и без падения под горизонт).

Допустим, какой-то космонавт где-то кинул камень прочь от горизонта не строго радиально, а под углом. Камень удаляется от горизонта, долетает до некоторой "точки поворота" $r=r_1,$ в которой его радиальная скорость обращается в ноль (а угловая - не равна нулю), и затем прилетает в точку $r_0$ вблизи горизонта, где мы вычисляем его скорость $v=dl/d\tau_0$ в системе отсчёта наблюдателя, покоящегося в точке $r_0.$

Длина пути $dl$ камня в окрестности точки наблюдения $r_0$ в случае c $L\neq 0$ содержит вклад не только от радиальной координаты, но и от угловой. Интересный вопрос: как друг с другом соотносятся эти вклады в $v$ (или в $v^2)$ при $r_0\to r_s?$ Приведённое выше вычисление показало, что $v^2\to 1.$ И ещё можно показать, что при этом угловой вклад стремится к нулю. Т.е. даже при не радиальной траектории камень "воткнётся" в горизонт радиально.


lazarius
lazarius в сообщении #1642495 писал(а):

$\displaystyle \left(\frac{d\tau}{d\tau_0}\right)^2=g_{tt}$

Производная равна ровно единице в точке где мы из состояния покоя отпускаем астронавта в его последнее путешествие. А $g_{tt}$ стремится к единице только на бесконечности.
Да, эта формула верна при $E=1,$ и условие $E=1$ означает, что на бесконечности скорость пробного тела равна нулю. Все свои обозначения я пояснял: пробное тело проходит путь $dl$ (в окрестности точки $r_0,$ в которой покоится наблюдатель) за время $d\tau$ по часам пробного тела и за время $d\tau_0$ по часам этого наблюдателя; $g_{tt}=1-r_s/r_0$ есть компонента метрического тензора в точке $r=r_0.$ Точку $r_0$ можно выбирать в любом месте над горизонтом, в том числе вблизи горизонта (такой предельный случай и был рассмотрен в моём сообщении).

Если Вы полагаете в этой формуле $r_0\to \infty,$ то, разумеется, в такой далёкой точке $g_{tt}=1$ и $d\tau=d\tau_0$ -- часы пробного тела и наблюдателя там идут одинаково, так как они покоятся. Но если точка $r_0$ выбрана вблизи горизонта, то $g_{tt}\ll 1.$ Там $d\tau\ll d\tau_0,$ потому что наблюдатель покоится, а пробное тело мчится к горизонту со скоростью уже близкой к скорости света, так что ход часов пробного тела выглядит замедленным. Указанная Вами формула об этом и говорит. Она верная.

lazarius в сообщении #1642453 писал(а):
Вы используете непривычную мне сигнатуру но даже я увидел что у вас в последнем члене знак не совпадает с тем что у меня в двух книжках с такой сигнатурой. Мы понимаем что последние два не имеют отношения к тому что мы обсуждаем и замнем этот вопрос.
Приведите, пожалуйста, точную цитату того места, в котором "знак не совпадает"; тогда смогу написать об исправлении. (У меня проблема со зрением, поэтому бывает много опечаток; в течение часа, доступного для редактирования, пытаюсь их исправить, но остаются и не замеченные. В данном случае после многократного редактирования уже не вижу ошибок в том своём сообщении.)

lazarius в сообщении #1642453 писал(а):
Вы используете факты (сохранение некоторых величин) которые мне неизвестны.

Различаю два варианта форумного обсуждения физической задачи:

1) ТС задаёт вопрос, чтобы разобраться в физике. Тогда участники отвечают в той форме, которая им более знакома (сами выбирают нужные детали - обозначения, сигнатуру метрики и т.п.) или/и которая им представляется более полезной в образовательном плане (сами выбирают, что и как рассказывать - методы решения задач, характер пояснений). А задающий вопросы ТС старается в ответы вникнуть, "мотает на ус" всё то, что оказывается для него новым.

Вариант 2) - это когда ТС просит "проверьте вот эти конкретные расчёты" или "прокомментируйте вот эту конкретную книгу". В этом варианте ему предстоит ждать добровольца, который возьмёт на себя труд проделать точно такие же расчёты, найти и прочитать указанную книгу и выдать оценку.



В варианте (1), т.е. если Вас интересует не только вопрос в вашем исходном сообщении о скорости радиального падения тел на горизонт в частном случае, обсуждение могло бы быть очень интересным - речь могла бы идти о всех возможных картинах движения пробных тел.

А именно, интересно вот что. Оказывается, вследствие высокой симметрии метрики Шварцшильда, здесь выполняются законы сохранения, аналогичные законам сохранения энергии и момента импульса в обычной ньютоновской механике при движении частицы в статическом сферически симметричном силовом поле. Как и в ньютоновской механике, из этих законов легко предвидеть характер траекторий пробных тел, не решая явно уравнения движения. (Там есть очень полезное понятие - "эффективный потенциал", зависящий от $r,L,$ и здесь тоже легко прийти к аналогичному понятию, полезному для выяснения возможных типов траекторий свободных пробных тел.)

Одно из следствий закона сохранения момента импульса - двумерность траектории: любая траектория лежит в плоскости. Можно считать, что это экваториальная координатная плоскость: $\theta = \pi/2,$ так что всё время $\sin \theta = 1$ и $d\theta=0.$ При не радиальном движении переменной угловой координатой является только $\varphi,$ с ней связана сохраняющаяся величина момента импульса $L$ (на единицу массы пробного тела).

Можно показать, что если радиальная скорость обращается в ноль при конечном значении $r_1$ радиальной координаты, $r_s<r=r_1<\infty ,$ то сохраняющаяся энергия $E$ (на единицу массы пробного тела) даётся формулой $$E^2=\left(1-\frac{r_s}{r_1}\right)\left(1+\frac{L^2}{r_1^2}\right)\,.$$
Для искомой $v^2,$ как уже говорилось, верна формула $$v^2=1-g_{tt}\,\frac{1}{E^2}\,,$$ то есть
$$v^2=1-\frac{1-r_s/r_0}{1-r_s/r_1}\, \left(1+\frac{L^2}{r_1^2}\right)^{-1}\,,$$ где, напомню, $r_0$ -- точка вблизи горизонта, в которой вычислен квадрат скорости пробного тела, $r_1$ -- точка, из которой тело начинает движение к горизонту с нулевой радиальной скоростью.

Если, следуя такой нумерации точек, ввести обозначения

$(1-r_s/r_0)=e^{2\Phi_0},$

$(1-r_s/r_1)=e^{2\Phi_1},$

и рассматривать только частный случай - радиальное движение, т.е. положить $L=0,$ - то приведённый мной результат запишется в виде

$v^2=1-e^{2(\Phi_0-\Phi_1)}$

Такой же результат и у Вас, отличие лишь в обозначениях: у Вас обозначено как $r$ и $\Phi$ то, что у меня здесь $r_0$ и $\Phi_0,$ а с индексом "0" у Вас обозначено то, что у меня с индексом "1".

Основой рассмотрения (о котором я попытался рассказать, оно подробно изложено в томе 2 МТУ), служат три довольно простых равенства - нормировка 4-скорости пробного тела и два "закона сохранения":

$\mathbf{u}\cdot\mathbf{u}=1$
$\mathbf{u}\cdot\mathbf{e}_t=E$
$\mathbf{u}\cdot\mathbf{e}_{\varphi}=-L$

По варианту (2) я пас. Если Вам нужен только он, то приношу извинения за вмешательство в вашу тему; постараюсь больше Вас не "доставать".

 Профиль  
                  
 
 Re: Скорость прохождения горизонта черной дыры
Сообщение14.06.2024, 06:30 


27/10/23
78
Cos(x-pi/2) в сообщении #1642592 писал(а):
Приведите, пожалуйста, точную цитату того места, в котором "знак не совпадает"; тогда смогу написать об исправлении. (У меня проблема со зрением, поэтому бывает много опечаток; в течение часа, доступного для редактирования, пытаюсь их исправить, но остаются и не замеченные. В данном случае после многократного редактирования уже не вижу ошибок в том своём сообщении.)

У меня тоже проблемы со зрением и тут я проглядел скобки в своих книжках:

$-r^2(d\theta^2 + \sin^2\theta d\varphi^2)$

В остальном у меня ошибок нет просто я не заметил что и у меня на горизонте скорость света независимо от точки начала путешествия.

Cos(x-pi/2) в сообщении #1642592 писал(а):
Если Вам нужен только он, то приношу извинения за вмешательство в вашу тему; постараюсь больше Вас не "доставать".

Вот это уже некорректно. О вас я такого не говорил и кавычки цитирования здесь не по делу. Если бы не ваше вмешательство я бы наверно до сих пор не заметил что моя исходная формула дает скорость света на горизонте.

Спасибо.

-- 14.06.2024, 07:10 --

lazarius в сообщении #1642591 писал(а):
sergey zhukov в сообщении #1642497 писал(а):
Так я не понял, вы против вывода Cos(x-pi/2) или за? Считаете, что там что-то неправильно или нет?

И при этом для очевидно разных начальных условий получится одинаковый результат не только на горизонте но и на всей траектории до него. Просто потому что в формуле скорость в квадрате:

$\displaystyle \left(\frac{d\tau}{d\tau_0}\right)^2=g_{tt}\,(1-v_{\infty}^2)$

Наверно и в этом проблемы нет... Но все это слишком усложняет простой вопрос.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 33 ]  На страницу Пред.  1, 2, 3  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group