Давным-давно я прочитал в книге Ю.И. Манина "Математика как метафора" вот такой отрывок. Привожу его как есть, может быть кто-нибудь прокомментирует. Фактически, здесь утверждается, что
арифметика полна, т.е. мы можем доказать или опровергнуть любое арифметическое утверждение. Интересно, справедливо ли что-то подобное для теории множеств. Есть ли вероятность, что гипотеза континуума, например, всё же доказуема или опровержима с помощью каких-то аналогичных инструментов? Есть ли какие-нибудь книги на русском языке про результаты Фефермана?
Таким образом, Гёдель явно указывает формулу, которая истинна, но не выводима с помощью данных дедуктивных средств! Иными словами, его рассуждение не только демонстрирует неполноту этого набора дедуктивных средств, но также дает эффективный способ пополнить этот набор новой аксиомой, истинность которой мы установили метаязыковыми разговорами. Расширив так множество
<множество доказуемых утверждений>, мы получим большее множество
, все еще не совпадающие с
<множеством истинных утверждений>; к нему можно снова применить конструкцию Гёделя и т. д. Таким образом, мы получаем рецепт для проведения целой серии творческих актов - пополнения арифметики новыми аксиомами, истинность которых мы не доказываем, но угадываем. (Формализация этого свойства
привела к математическому понятию «творческого множества», которое автор не намерен обсуждать подробнее, но вынес в заголовок раздела - для рекламы.) На самом доле, разумеется, творческий акт здесь был совершен однократно - самим Гёделем; и его содержание уникально.
Ясно, что как бы мы ни постарались финитно описать рецепт для бесконечного увеличения
таким способом, все
все равно окажется неисчерпанным - в силу той же теоремы о неполноте.
Однако можно постараться исчерпать формулами гёделевского типа, отказавшись от надежды описать этот набор формул финитно.Очень красивый результат в этом направлении доказал около десяти лет назад американский математик С.Феферман. Его изложением мы и закончим статью.
С. Феферман заметил, что есть много других способов добавлять к уже имеющимся аксиомам невыводимые, но истинные формулы. Истинность их устанавливается в метаязыке, как следствие нашей веры в истинность предыдущих аксиом (принятие которых, в свою очередь, было актом веры: вспомните аксиомы индукции).
Точнее, пусть
- любая формула с одной свободной переменной. С. Феферман показывает, как написать формулу AP без свободных переменных, смысл которой в метаязыке может быть выражен так:
если для всех чисел
формулы
выводимы из предыдущей системы аксиом, то
.
После этого оказывается, что добавление формул AP в бесконечном количестве и всех выводов из них исчерпывает
.
Иными словами, начнем с принятия элементарных арифметических тождеств и аксиом индукции. Тогда для постижения полной истины в арифметике нам остается еще совершить трансфинитную последовательность актов веры в то, что предшествующие акты веры не были заблуждением.