2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5 ... 34  След.
 
 Попытка доказательства теоремы ферма 3
Сообщение03.07.2023, 21:49 
Ферма утверждал, что уравнение $x^3+x'^3=z^3$ не имеет решений в рациональных числах.
Попробуем доказать обратное.

Предположим, что такое решение существует

при $x=a$, $x'=b$, $z=c$, где $a$, $b$, $c$ - целые положительные взаимно простые числа и $a>b$, то есть $a^3+b^3=c^3$.

1.1. $a+b-c=d$, где
$d$ - целое положительное число
$a^2+b^2=c^2+p$, где $p$- целое положительное число.


1.2. $a+b-c=d$,
$a^2+b^2-c^2=p$ Перемножаем левые и правые части, получаем: $pa+pb-pc=a^2d+b^2d-c^2d$, $a(ad-p)+b(bd-p)=c(cd-p)

1.3. $a(ad-p)+b(bd-p)=c(cd-p)$, $a^3+b^3=c^3$ (п.1.1). Перемножаем левые и правые части, получаем:$c^{3}a(ad-p)+c^{3}b(bd-p)=a^{3}c(cd-p)+b^{3}c(cd-p)$ , следовательно, $(cd-p)a^{3}-c^{2}da^2+c^{2}pa=-((cd-p)b^3-c^{2}db^2+c^{2}pb)$ .

2.1.1 функция $y=(cd-p)x^3-c^{2}dx^2+c^{2}px$ в точках $a$ и $b$ принимает одинаковые значения разных знаков и она является целой рациональной функцией, непрерывна и определена при всех значениях $x$, следовательно, между $a$ и $b$ существует точка ( назовем ее
$h$, значение функции в которой равно $0$.

2.1.3 Найдем все точки, значение функции в которых равно нулю.

$(cd-p)x^3-c^{2}dx^2+c^{2}px=0$.
$x=0$ или

$(cd-p)x^2-c^{2}dx+c^{2}p=0$
$D=c^4d^2-4(cd-p)c^2p$, отсюда
$x=с$ или $x=\frac{cp}{cd-p}$.
Поскольку $a<c$, $b>0$, $h=\frac{cp}{cd-p}$ -рациональное число.

3.1.1 поскольку
функция $y=(cd-p)x^3-c^{2}dx^2+c^{2}px$ является целой рациональной функцией, непрерывна и определена при всех значениях $x$ и ее значение равно нулю в точках 0, h и с,
существует три точки, в которых она принимает одинаковые отрицательные значения ($a$,$a_1$ и $a_2$) и три , в которых она принимает одинаковые положительные значения ($b$, $b_1$ и $b_2$).
Эти числа действительные (поскольку если они они комплексные, Это противоречит существованию рационального $h$ между $a$ и $b$


Очевидно, что может существовать два варианта расположения $h$ относительно $k$ - точки перегиба функции ($0<h<k$ и $k<h<\frac{c}{\sqrt{2}}$
$y=(cd-p)x^3-c^2dx^2+c^2px$ и
три варианта расположения $a_2$, $b_1$, $b$, $a$ относительно друг друга:
$a_1<b<b_1<a_2<a<b_2$, $a_1<b_1<b<a_2<a<b_2$,$a_1<b_1<b<a<a_2<b_2$.

Рассмотрим вариант $a_1<b<b_1<a_2<a<b_2$

Изображение

4.1.1Рассмотрим движение графика функции $f(x)=(cd-p)x^3-c^2dx^2+c^2px$ .

$f_1(x)=f(x)-2f(k)$, где $k$ - точка перегиба функции $f(x)$
$f_2(x)=f_1(x-(k-h))$,

$\frac{k+(k-h)+(k-h)}{2}=\frac{c}{2}=\frac{(c-h)+h}{2}$, $f_2(h_1)=f_2(0)=f_2(c)=0$
$\frac{h_1+h}{2}=3k-2h$, $h_1-h=((3k-2h)-h)=3(k-h)$


$f_3(x)=f_1(x+3(k-h))$



4.1.2
$f_2(b_2')=f(b_2)=f(b_1)=f_2(b_1'')=f_3(b_1')$
$f_3(a_2')=f(a_2)=f_2(a_2'')=-f(b_1)$
$f_2(b_2')=f(b_2)=-f(a_1)=-f_2(a_1')$

$f_2(h_1)=f(h)=f(0)=f_2(0)=f(c)=f_2(c)=0$,
$b+b_1+b_2=a+a_1+a_2=0+h+c$,
$b'+b_1''+b_2'=a'+a_1'+a_2''=0+h_1+c$.
$b'+(b_1'+3(k-h))+b_2'=0+(h+3(k-h))+c$ , следовательно,
$b'+b_1'+b_2'=0+h_1+c=(0+h+c)+(3(k-h))=(b+b_1+b_2)+3(k-h)$

отсюда
$b-b'=(b_1'-b_1)+(b_2'-b_2')-3(k-h)=d$

$b_1+a_2=2h-(a_2'-a_2)$,
$b_2+a_1=c-(b_2'-b_2)$;
$a+b=c+(a-a')=c+d$
$(a_2'-a_2)+(b_2'-b_2)=d$.

Далее

$b_2'-b_1'=b_2'-(b_1''-3(k-h))=(a_2'-a_1')+3(k-h)$,
$b_2'-b_1'=(c-a_1)-(2h-a_2)=(a_2-a_1)+(c-2h)=(a_2-a_1)+3(k-h)=b_2-b_1$,
$(b_2'-b_2)=(b_1'-b_1)=\frac{d}{2}$.
Отсюда
4.1.3. $a_1+b_2=c-\frac{d}{2}$- рациональное число,
$a_2+b_1=2h-\frac{d}{2}$- рациональное число.


5.1.1 $a_1+b_2$ - рациональное число (4.1.3)


$(a_1^3+b_2^3)(cd-p)-c^2d(a_1^2+b_2^2)+c^2p(a_1+b_2)=0$
$(a_1+b_2)((a_1+b_2)^2-3a_1b_2)(cd-p)-c^2d(a_1+b_2)^2+2c^2da_1b_2+c^2p(a_1+b_2)=0$,
$(a_1+b_2){(a_1+b_1)^2(cd-p)-c^2d(a_1+b_1)+c^2p}-<span style=
$2c^2d\not= 3(c-\frac{d}{2})(cd-p)$, поскольку $\frac{2c^2d}{cd-p}$ не может быть целым числом,
следовательно
5.1.2.$a_1b_2$ - рациональное число.
аналогично $a_2b_1$ - рациональное число.
но у нас $a_1a_2$ - рациональное число.
$a_1(b_2-a_2)$- рациональное число, $a_1(b_2-(\frac{c^2d}{cd-p}-a-a_1))$,

$a_1((b_2+a_1)+a-\frac{c^2d}{cd-p})$ - рациональное число, следовательно,
$a_1$ -рациональное число, следовательно, $a_2$, $b_1$, $b_2$ - рациональные числа.

6.1.1 $a_1+b_2=c-\frac{d}{2}$ (4.1.3)
$(a_1+b_2){(a_1+b_1)^2(cd-p)-c^2d(a_1+b_1)+c^2p}-a_1b_1{3(a_1+b_1)(cd-p)-2c^2d}$ (5.1.1),
$a_1+b_2=\frac{3c-a-b}{2}$, следовательно,

$\frac{\frac{3c-a-b}{2}(\frac{(3c-a-b)^2}{4}-3a_1b_2)(cd-p)}{c^2}$-целое число, следовательно
$a_1b_1$ должно иметь общий делитель с $a+b$, отличный от $2$. То есть, либо $a_1$, либо $b_2$ ( либо, и $a_1$, и $b_2$ должны иметь общий делитель с $a+b$, отличный от $2$.
Но это невозможно, поскольку
$a_1^3(cd-p)-a_1^2c^2d+a_1c^2p=a^3(cd-p)-a^2c^2d+ac^2p$,
$b_2^3(cd-p)-b_2^2c^2d+b_2c^2p=b^3(cd-p)-b^2c^2d+bc^2p$,

$a$, $b$ и $c$ - взаимно простые числа.

(Если то, что написала, верно,я распишу два других варианта и прикреплю картинки)

 
 
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение03.07.2023, 22:23 
Какой странный дискриминант в $2.1.3$
Должно быть не $c^2d^2$, а $c^4d^2$
Опять описка?

 
 
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение03.07.2023, 22:27 
Booker48 в сообщении #1599753 писал(а):
Какой странный дискриминант в $2.1.3$
Должно быть не $c^2d^2$, а $c^4d^2$
Опять описка?

Да, сейчас исправлю

 
 
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение03.07.2023, 22:33 
Может не стоит так торопиться? Взять паузу, исправить все опечатки и тщательно вычитать текст.
А то индексы в названиях топиков станут двузначными. )))

 
 
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение03.07.2023, 23:28 
Natalya,

Вы допускайте элементарные ошибки
Цитата:
$\frac{k+(k-h)+(k-h)}{2}=\frac{c}{2}$

Так как $k= \frac{c^2 d}{3 (c d - p)}$ и $h=cp/(cd-p)$
то $3k-2h=\frac{c(cd-2p)}{cd-p}$

Но у Вас выше пробел в док-ве.
Цитата:
Эти числа действительные (поскольку если они они комплексные, Это противоречит существованию рационального $h$ между $a$ и $b$


Ур-ни 3-й степени с целыми коэффициентами не может иметь три комплексных корня. Или три действительные или два комплексных и один действительный.
Вот этот случай "два комплексных и один действительный" вполне может реализоваться и тогда введение Вами дополнительных $b'$, $b''$ становится бессмысленным.

 
 
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение03.07.2023, 23:43 
Onoochin в сообщении #1599756 писал(а):
Natalya,


Ур-ни 3-й степени с целыми коэффициентами не может иметь три комплексных корня. Или три действительные или два комплексных и один действительный.
Вот этот случай "два комплексных и один действительный" вполне может реализоваться и тогда введение Вами дополнительных $b'$, $b''$ становится бессмысленным.

нет.
График функции $f(x)$ (целой рациональной функции, которая определена и непрерывна) пересекает $OX$ в 3 точках. Точки пересечения $0$, $c$ и $\frac{cp}{cd-p}$ рациональные (действительные). $a$и $b$ целые числа (действительные) и не являются критическими точками функции . Значит, существует три действительных корня нашего Ур-ни 3-й степени .

-- Вт июл 04, 2023 01:13:10 --

Onoochin в сообщении #1599756 писал(а):
Natalya,

Вы допускайте элементарные ошибки

Эта строчка не влияет на доказательство, Она случайно записалась из прошлых текстов, для меня набор текста - серьёзный квест. Математический текст я набирала последний раз более 10 лет назад (и тогда делала это впервые :D ), а русский текст пишу через Google переводчик, у меня на компьютере нет русской клавиатуры. Неужели описки важнее сути?

-- Вт июл 04, 2023 01:28:45 --

Booker48 в сообщении #1599755 писал(а):
Может не стоит так торопиться? Взять паузу, исправить все опечатки и тщательно вычитать текст.
А то индексы в названиях топиков станут двузначными. )))

(Оффтоп)

Вообще-то я работаю, и у меня ещё есть личная жизнь. :D
предлагаете взять паузу до пенсии? А вдруг не доживу? :D

 
 
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение04.07.2023, 01:01 
natalya_1 в сообщении #1599757 писал(а):
Booker48 в сообщении #1599755
писал(а):
Может не стоит так торопиться? Взять паузу, исправить все опечатки и тщательно вычитать текст.
А то индексы в названиях топиков станут двузначными. )))

(Оффтоп)

Вообще-то я работаю, и у меня ещё есть личная жизнь. :D
предлагаете взять паузу до пенсии? А вдруг не доживу? :D


(Оффтоп)

Хм... В закрытой теме вы, в основном, переписывали несколько раз целиком доказательство и на это ушло больше десяти дней. Десять дней вашей жизни, на минуточку.
Тем, кто видит этот текст впервые, за опечатками не видно сути, кто знает, опечатка это или ошибка?

 
 
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение04.07.2023, 01:15 
Booker48 в сообщении #1599760 писал(а):
natalya_1 в сообщении #1599757 писал(а):
Booker48 в сообщении #1599755
писал(а):
Может не стоит так торопиться? Взять паузу, исправить все опечатки и тщательно вычитать текст.
А то индексы в названиях топиков станут двузначными. )))

(Оффтоп)

Вообще-то я работаю, и у меня ещё есть личная жизнь. :D
предлагаете взять паузу до пенсии? А вдруг не доживу? :D


(Оффтоп)

Хм... В закрытой теме вы, в основном, переписывали несколько раз целиком доказательство и на это ушло больше десяти дней. Десять дней вашей жизни, на минуточку.
Тем, кто видит этот текст впервые, за опечатками не видно сути, кто знает, опечатка это или ошибка?

(Оффтоп)

В том-то и дело что я не всё переписываю, копирую основную часть из предыдущих текстов, отсюда и вылезают огрехи и опечатки.Если я буду каждый раз писать заново, у меня уйдёт гораздо больше, чем 10 дней жизни :oops: Ещё и 7 часов разница во времени с Москвой. Ночью тяжело писать

 
 
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение04.07.2023, 07:20 
Onoochin в сообщении #1599756 писал(а):
Natalya,


Ур-ни 3-й степени с целыми коэффициентами не может иметь три комплексных корня. Или три действительные или два комплексных и один действительный.
Вот этот случай "два комплексных и один действительный" вполне может реализоваться и тогда введение Вами дополнительных $b'$, $b''$ становится бессмысленным.

Как я уже писала в предыдущей теме, я проверила дискриминанты на положительность.
И случае $a_1$ и $a_2$ он отрицательный, но это противоречит существованию рациональной точки $h$.
Невозможность существования точки $h$
может служить доказательством отсутствия рациональных решений уравнения $x^3+x'^3=z^3$ (Но ведь она существует в любом случае)?
Или $a$ -критическая точка функции (и тогда все тоже очень просто решается)?

 
 
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение04.07.2023, 10:34 
Аватара пользователя
Всё стеснялся спросить...
Почему
natalya_1 в сообщении #1599749 писал(а):
$x^3+x'^3=z^3$

а не
$x^3+y^3=z^3$
?
Апостроф так легко потерять...

 
 
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение04.07.2023, 11:08 
miflin в сообщении #1599773 писал(а):
Всё стеснялся спросить...
Почему
natalya_1 в сообщении #1599749 писал(а):
$x^3+x'^3=z^3$

а не
$x^3+y^3=z^3$
?
Апостроф так легко потерять...

Ну у Натальи $y$ используется для обозначения функции, которую она рассматривает

 
 
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение04.07.2023, 14:22 
natalya_1 в сообщении #1599767 писал(а):
Onoochin в сообщении #1599756 писал(а):
Natalya,



Или $a$ -критическая точка функции (и тогда все тоже очень просто решается)?

$(a^3-a_1^3)(cd-p)-c^2d(a^2-a_1^2)+c^2p(a-a_1)=0$
Решаем квадратное уравнение
$(cd-p)x^2-(c^2d-a(cd-p))x+(c^2p+a^2(cd-p)^2)=0$
$D_1=(c^2d-a(cd-p))^2-4(cd-p)(c^2p+a^2(cd-p))$
$D_1=c^4d^2-2a(cd-p)c^2d-3a^2(cd-p)^2-4(cd-p)c^2p$
$D_1=-(3a^2(cd-p)^2+2a(cd-p)c^2d-c^2(cd-2p)^2)$
$3a^2>c^2$(поскольку $a>\frac{c}{\sqrt{2}}$), $cd-p>cd-2p$
следовательно, $D_1<0$, $a_1$ и $a_2$-комплексные числа.
Поскольку $(cd-p)x^3-c^2dx^2+c^2px=0$ равно в трёх рациональных точках $0$, $h$и $c$,
$f(a)<0$, $f(b)>0$ , $a$-критическая точка функции $f(x)=(cd-p)x^3-c^2dx^2+c^2px$.

$(b^3-b_1^3)(cd-p)-c^2d(b^2-b_1^2)+c^2p(b-b_1)=0$
Решаем квадратное уравнение
$(cd-p)x^2-(c^2d-b(cd-p))x+(c^2p+b^2(cd-p)^2)=0$
$D_2=(c^2d-b(cd-p))^2-4(cd-p)(c^2p+b^2(cd-p))$
$D_2=c^4d^2-2b(cd-p)c^2d-3b^2(cd-p)^2-4(cd-p)c^2p$
$D_2=3b^2(cd-p)^2+2b(cd-p)c^2d-c^2(cd-2p)^2$.
если
$D_2<0$, $b$ - тоже критическая точка, $b_1$ и $b_2$-комплексные числа.
если
$D_2>0$, у полинома 3 действительных корня $b$, $b_1$ и $b_2$

Найдём критические точки функции $y=(cd-p)x^3-c^2dx^2+c^2px$.
$y'=3(cd-p)x^2-2c^2dx+c^2p$
$3(cd-p)x^2-2c^2dx+c^2p=0$
$D_3=4c^4d^2-12(cd-p)c^2p$,
$D_3=4c^2(c^2d^2-3cdp+3p^2)$
Проверим дискриминант на положительность
$c^2d^2-3cdp+3p^2>0$
$a=\frac{c(cd+\sqrt{c^2d-3cdp+3p^2)}}{3(cd-p)}$, Что невозможно поскольку $a$ и $c$ -взаимно простые числа, $c$ и $cd-p$ не могут иметь общего делителя кроме $2$ ( если $c$ -чётное)

 
 
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение04.07.2023, 14:54 
natalya_1 в сообщении #1599799 писал(а):
(Ну, или просто надо было найти критические точки, увидеть, что у функции нет действительных критических точек, а значит в точках $a$ и $b$ она не может принимать одинаковые значения разных знаков?????)

Я не могу найти, где именно у вас используется целочисленность?

 
 
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение04.07.2023, 14:58 
Antoshka в сообщении #1599805 писал(а):
natalya_1 в сообщении #1599799 писал(а):
(Ну, или просто надо было найти критические точки, увидеть, что у функции нет действительных критических точек, а значит в точках $a$ и $b$ она не может принимать одинаковые значения разных знаков?????)

Я не могу найти, где именно у вас используется целочисленность?

Везде. $a$, $b$ ,$c$ -Это целые положительные взаимно простые числа.
$p$, $d$-целые положительные числа.

 
 
 
 Re: Попытка доказательства теоремы ферма 3
Сообщение04.07.2023, 16:05 
Опять описок налепила...


Минус потеряла
$D_2=-(3b^2(cd-p)^2+2b(cd-p)c^2d-c^2(cd-2p)^2)$.
не влияет на результат

 
 
 [ Сообщений: 508 ]  На страницу 1, 2, 3, 4, 5 ... 34  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group