мат-ламерНу, мне тоже так кажется, что можно. Просто раньше как-то вообще не думал про понятие непрерывной дифференцируемости на множествах, которые не являются открытыми (в том числе и про случай, когда они представляют из себя подмножества некоторого открытого множества). Вот и смутился. 
В каком смысле корректно?
Поясню - мне нужно, чтобы это определение можно было применять при чтении книг по методам оптимизации. В книгах по методам оптимизации (классических учебниках Васильева и Сухарева, например) решается задача условной оптимизации 

, где 

 - некоторое множество, которое называют допустимым. Про то, как именно оно соотносится с областью определения функции 

, там пишут лишь следующее: имеется функция нескольких переменных 

, определенная на 

 или на некотором множестве, содержащем 

. После чего там следует куча теорем, многие из которых формулируются примерно так: "Если функция 

 непрерывно дифференцируема на множестве 

 (
которое в общем случае не обязательно является открытым), то ... (дальше следует какое-нибудь утверждение)". И я хочу разобраться, что конкретно в такого рода литературе означает непрерывная дифференцируемость функции 

 на 

, то есть что имеют в виду авторы этих учебников, когда пишут эту фразу. Свой вариант я предложил выше (сделав предположение, что в такой литературе неявно предполагают, что выполняется 

, а не просто 

), и хочу узнать, не будет ли оно противоречить всякой литературе по методам оптимизации. Видимо, авторы учебников по методам оптимизации считают этот момент очевидным даже для студентов второго-третьего курса. Но я давно вуз закончил и многое забыл, поэтому мне он как-то не кажется очевидным. Да и в учебниках по матанализу вообще не вводится понятие непрерывной дифференцируемости на множестве, которое в общем случае не является открытым (пусть даже и представляют из себя подмножество открытого множества). В общем, смутило меня это все как-то.