2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 188, 189, 190, 191, 192, 193, 194 ... 215  След.
 
 Re: Пентадекатлон мечты
Сообщение17.12.2022, 07:15 
Yadryara в сообщении #1574124 писал(а):
Hugo, у Вас, видимо, ошибка в "Lemma 7" на странице https://github.com/hvds/divrep/wiki/D(12,k)-calculation#wiki-pages-box.

Правильно $18q$, а не $18q^2$.
Thanks, now fixed.

 
 
 
 Re: Пентадекатлон мечты
Сообщение17.12.2022, 09:39 
Аватара пользователя
Теперь получилось весьма много: 4990 паттернов. Буду разбираться.

Довольно очевидно, что легальных паттернов такого вида для 14-ки должно быть меньше чем для 13-ки, а для 15-ки — ещё меньше чем для 14-ки.

 
 
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 04:05 
Аватара пользователя
Yadryara в сообщении #1574135 писал(а):
Теперь получилось весьма много: 4990 паттернов. Буду разбираться.

Нашёл ошибку. Переход от 11-к к 12-кам был прост и я его сделал безошибочно. А вот от 12-к к 13-кам...

3704 паттерна нашлось.

 
 
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 05:19 
Аватара пользователя
Dmitriy40 в сообщении #1574123 писал(а):
останется 3938 паттернов, из которых 530 с квадратами.
[..]
Как например исключили 57шт паттернов с $22p^2$ на 32p+6?

296 у меня с квадратами.

С $22p^2$ у меня всего 46:

(46)

Код:
1  [10, 11, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21, 22]
2  [10, 11, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21, 22]
3  [10, 11, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21, 22]
4  [10, 11, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21, 22]
5  [2, 11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 507, 22]
6  [2, 11, 12, 7, 50, 3, 32, 1, 18, 845, 28, 3, 22]
7  [2, 11, 12, 1183, 50, 3, 32, 1, 18, 5, 28, 3, 22]
8  [338, 11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 3, 22]
9  [2, 11, 12, 637, 50, 3, 32, 1, 18, 5, 28, 3, 22]
10  [2, 11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 507, 22]
11  [2, 11, 12, 49, 50, 3, 32, 1, 18, 845, 28, 3, 22]
12  [338, 11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 3, 22]
13  [2, 11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 507, 22]
14  [2, 11, 12, 16807, 50, 3, 32, 1, 18, 845, 28, 3, 22]
15  [338, 11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 3, 22]
16  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 22, 13]
17  [11, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21, 22, 1]
18  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 22, 169]
19  [11, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21, 22, 1]
20  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 22, 371293]
21  [11, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21, 22, 1]
22  [11, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21, 22, 1]
23  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 22, 13]
24  [11, 12, 13, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]
25  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 22, 169]
26  [11, 12, 169, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]
27  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 22, 371293]
28  [11, 12, 371293, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]
29  [11, 12, 2197, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]
30  [11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 3, 22, 13]
31  [11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 3, 22, 169]
32  [11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 507, 22, 1]
33  [11, 12, 7, 50, 3, 32, 1, 18, 845, 28, 3, 22, 1]
34  [11, 12, 1183, 50, 3, 32, 1, 18, 5, 28, 3, 22, 1]
35  [11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 3, 22, 371293]
36  [11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 3, 22, 13]
37  [11, 12, 637, 50, 3, 32, 1, 18, 5, 28, 3, 22, 1]
38  [11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 3, 22, 169]
39  [11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 507, 22, 1]
40  [11, 12, 49, 50, 3, 32, 1, 18, 845, 28, 3, 22, 1]
41  [11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 3, 22, 371293]
42  [11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 3, 22, 13]
43  [11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 3, 22, 169]
44  [11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 507, 22, 1]
45  [11, 12, 16807, 50, 3, 32, 1, 18, 845, 28, 3, 22, 1]
46  [11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 3, 22, 371293]


Все $22p^2$ у меня на 38-м месте.

 
 
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 10:43 
Аватара пользователя
Dmitriy40 в сообщении #1574123 писал(а):
Как например исключили 57шт паттернов с $22p^2$ на 32p+6?

Для этого неплохо бы глянуть на этот список из 57. Скорее всего, прога исключила только 11 из них.

Dmitriy40 в сообщении #1574123 писал(а):
из которых 530 с квадратами.

А у меня 296 с квадратами. И по-хорошему надо бы разобраться с, как минимум, 234 не совпавшими паттернами с квадратами. Вот мои 296:

(sq>0)

Код:
1  [9, 10, 11, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21]
2  [9, 10, 11, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21]
3  [9, 10, 11, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21]
4  [9, 10, 11, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21]
5  [9, 10, 121, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21]
6  [9, 10, 121, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21]
7  [9, 10, 121, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21]
8  [9, 10, 121, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21]
9  [9, 10, 161051, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21]
10  [9, 10, 161051, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21]
11  [9, 10, 161051, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21]
12  [9, 10, 161051, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21]
13  [9, 10, 1331, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21]
14  [9, 10, 1331, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21]
15  [9, 10, 1331, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21]
16  [9, 10, 1331, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21]
17  [1, 2, 3, 4, 5, 18, 7, 32, 3, 50, 11, 12, 2197]
18  [1, 2, 3, 4, 5, 18, 7, 32, 3, 50, 121, 12, 2197]
19  [1, 2, 3, 4, 5, 18, 847, 32, 3, 50, 1, 12, 2197]
20  [1, 2, 3, 4, 605, 18, 7, 32, 3, 50, 1, 12, 2197]
21  [1, 2, 363, 4, 5, 18, 7, 32, 3, 50, 1, 12, 2197]
22  [1, 2, 3, 4, 5, 18, 7, 32, 3, 50, 161051, 12, 2197]
23  [1, 2, 3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 13]
24  [1, 2, 3, 52, 5, 18, 7, 32, 3, 50, 1331, 12, 1]
25  [1, 2, 3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 169]
26  [1, 2, 3, 4, 5, 18, 7, 32, 507, 50, 1331, 12, 1]
27  [1, 2, 3, 4, 845, 18, 7, 32, 3, 50, 1331, 12, 1]
28  [1, 2, 507, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 1]
29  [1, 2, 3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 371293]
30  [1, 2, 3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 2197]
31  [1, 2, 3, 4, 5, 18, 49, 32, 3, 50, 11, 12, 2197]
32  [1, 2, 3, 4, 5, 18, 539, 32, 3, 50, 1, 12, 2197]
33  [1, 2, 3, 4, 5, 18, 49, 32, 3, 50, 121, 12, 2197]
34  [1, 2, 3, 4, 605, 18, 49, 32, 3, 50, 1, 12, 2197]
35  [1, 2, 363, 4, 5, 18, 49, 32, 3, 50, 1, 12, 2197]
36  [1, 2, 3, 4, 5, 18, 49, 32, 3, 50, 161051, 12, 2197]
37  [1, 2, 3, 4, 5, 18, 49, 32, 3, 50, 1331, 12, 13]
38  [1, 2, 3, 52, 5, 18, 49, 32, 3, 50, 1331, 12, 1]
39  [1, 2, 3, 4, 5, 18, 49, 32, 3, 50, 1331, 12, 169]
40  [1, 2, 3, 4, 5, 18, 49, 32, 507, 50, 1331, 12, 1]
41  [1, 2, 3, 4, 845, 18, 49, 32, 3, 50, 1331, 12, 1]
42  [1, 2, 507, 4, 5, 18, 49, 32, 3, 50, 1331, 12, 1]
43  [1, 2, 3, 4, 5, 18, 49, 32, 3, 50, 1331, 12, 371293]
44  [1, 2, 3, 4, 5, 18, 49, 32, 3, 50, 1331, 12, 2197]
45  [1, 2, 3, 4, 5, 18, 16807, 32, 3, 50, 11, 12, 2197]
46  [1, 2, 3, 4, 5, 18, 16807, 32, 3, 50, 121, 12, 2197]
47  [1, 2, 3, 4, 605, 18, 16807, 32, 3, 50, 1, 12, 2197]
48  [1, 2, 363, 4, 5, 18, 16807, 32, 3, 50, 1, 12, 2197]
49  [1, 2, 3, 4, 5, 18, 16807, 32, 3, 50, 161051, 12, 2197]
50  [1, 2, 3, 4, 5, 18, 16807, 32, 3, 50, 1331, 12, 13]
51  [1, 2, 3, 52, 5, 18, 16807, 32, 3, 50, 1331, 12, 1]
52  [1, 2, 3, 4, 5, 18, 16807, 32, 3, 50, 1331, 12, 169]
53  [1, 2, 3, 4, 5, 18, 16807, 32, 507, 50, 1331, 12, 1]
54  [1, 2, 3, 4, 845, 18, 16807, 32, 3, 50, 1331, 12, 1]
55  [1, 2, 507, 4, 5, 18, 16807, 32, 3, 50, 1331, 12, 1]
56  [1, 2, 3, 4, 5, 18, 16807, 32, 3, 50, 1331, 12, 371293]
57  [1, 2, 3, 4, 5, 18, 16807, 32, 3, 50, 1331, 12, 2197]
58  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 11, 12, 13]
59  [13, 2, 3, 4, 5, 18, 343, 32, 3, 50, 11, 12, 1]
60  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 11, 12, 169]
61  [1, 2, 3, 4, 5, 18, 343, 32, 507, 50, 11, 12, 1]
62  [1, 2, 3, 4, 845, 18, 343, 32, 3, 50, 11, 12, 1]
63  [1, 338, 3, 4, 5, 18, 343, 32, 3, 50, 11, 12, 1]
64  [169, 2, 3, 4, 5, 18, 343, 32, 3, 50, 11, 12, 1]
65  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 11, 12, 371293]
66  [371293, 2, 3, 4, 5, 18, 343, 32, 3, 50, 11, 12, 1]
67  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 11, 12, 2197]
68  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 121, 12, 13]
69  [13, 2, 3, 4, 5, 18, 343, 32, 3, 50, 121, 12, 1]
70  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 121, 12, 169]
71  [1, 2, 3, 4, 5, 18, 343, 32, 507, 50, 121, 12, 1]
72  [1, 2, 3, 4, 845, 18, 343, 32, 3, 50, 121, 12, 1]
73  [1, 338, 3, 4, 5, 18, 343, 32, 3, 50, 121, 12, 1]
74  [169, 2, 3, 4, 5, 18, 343, 32, 3, 50, 121, 12, 1]
75  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 121, 12, 371293]
76  [371293, 2, 3, 4, 5, 18, 343, 32, 3, 50, 121, 12, 1]
77  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 121, 12, 2197]
78  [1, 2, 3, 4, 605, 18, 343, 32, 3, 50, 1, 12, 13]
79  [13, 2, 3, 4, 605, 18, 343, 32, 3, 50, 1, 12, 1]
80  [1, 2, 3, 4, 605, 18, 343, 32, 3, 50, 1, 12, 169]
81  [1, 2, 3, 4, 605, 18, 343, 32, 507, 50, 1, 12, 1]
82  [1, 338, 3, 4, 605, 18, 343, 32, 3, 50, 1, 12, 1]
83  [169, 2, 3, 4, 605, 18, 343, 32, 3, 50, 1, 12, 1]
84  [1, 2, 3, 4, 605, 18, 343, 32, 3, 50, 1, 12, 371293]
85  [371293, 2, 3, 4, 605, 18, 343, 32, 3, 50, 1, 12, 1]
86  [1, 2, 3, 4, 605, 18, 343, 32, 3, 50, 1, 12, 2197]
87  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 161051, 12, 13]
88  [13, 2, 3, 4, 5, 18, 343, 32, 3, 50, 161051, 12, 1]
89  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 161051, 12, 169]
90  [1, 2, 3, 4, 5, 18, 343, 32, 507, 50, 161051, 12, 1]
91  [1, 2, 3, 4, 845, 18, 343, 32, 3, 50, 161051, 12, 1]
92  [1, 338, 3, 4, 5, 18, 343, 32, 3, 50, 161051, 12, 1]
93  [169, 2, 3, 4, 5, 18, 343, 32, 3, 50, 161051, 12, 1]
94  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 161051, 12, 371293]
95  [371293, 2, 3, 4, 5, 18, 343, 32, 3, 50, 161051, 12, 1]
96  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 161051, 12, 2197]
97  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 1331, 12, 13]
98  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 1331, 12, 169]
99  [1, 2, 3, 4, 5, 18, 343, 32, 507, 50, 1331, 12, 1]
100  [1, 2, 3, 4, 845, 18, 343, 32, 3, 50, 1331, 12, 1]
101  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 1331, 12, 371293]
102  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 1331, 12, 2197]
103  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 11, 12, 13]
104  [1, 2, 3, 20, 13, 18, 343, 32, 75, 2, 11, 12, 1]
105  [13, 2, 3, 20, 1, 18, 343, 32, 75, 2, 11, 12, 1]
106  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 11, 12, 169]
107  [1, 2, 3, 20, 169, 18, 343, 32, 75, 2, 11, 12, 1]
108  [1, 338, 3, 20, 1, 18, 343, 32, 75, 2, 11, 12, 1]
109  [169, 2, 3, 20, 1, 18, 343, 32, 75, 2, 11, 12, 1]
110  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 11, 12, 371293]
111  [1, 2, 3, 20, 371293, 18, 343, 32, 75, 2, 11, 12, 1]
112  [371293, 2, 3, 20, 1, 18, 343, 32, 75, 2, 11, 12, 1]
113  [1, 2, 3, 20, 11, 18, 343, 32, 75, 2, 1, 12, 13]
114  [13, 2, 3, 20, 11, 18, 343, 32, 75, 2, 1, 12, 1]
115  [1, 2, 3, 20, 11, 18, 343, 32, 75, 2, 1, 12, 169]
116  [1, 2, 3, 20, 1859, 18, 343, 32, 75, 2, 1, 12, 1]
117  [1, 338, 3, 20, 11, 18, 343, 32, 75, 2, 1, 12, 1]
118  [169, 2, 3, 20, 11, 18, 343, 32, 75, 2, 1, 12, 1]
119  [1, 2, 3, 20, 11, 18, 343, 32, 75, 2, 1, 12, 371293]
120  [371293, 2, 3, 20, 11, 18, 343, 32, 75, 2, 1, 12, 1]
121  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 121, 12, 13]
122  [1, 2, 3, 20, 13, 18, 343, 32, 75, 2, 121, 12, 1]
123  [13, 2, 3, 20, 1, 18, 343, 32, 75, 2, 121, 12, 1]
124  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 121, 12, 169]
125  [1, 2, 3, 20, 169, 18, 343, 32, 75, 2, 121, 12, 1]
126  [1, 338, 3, 20, 1, 18, 343, 32, 75, 2, 121, 12, 1]
127  [169, 2, 3, 20, 1, 18, 343, 32, 75, 2, 121, 12, 1]
128  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 121, 12, 371293]
129  [1, 2, 3, 20, 371293, 18, 343, 32, 75, 2, 121, 12, 1]
130  [371293, 2, 3, 20, 1, 18, 343, 32, 75, 2, 121, 12, 1]
131  [1, 2, 3, 20, 1, 18, 343, 32, 75, 242, 1, 12, 13]
132  [1, 2, 3, 20, 13, 18, 343, 32, 75, 242, 1, 12, 1]
133  [13, 2, 3, 20, 1, 18, 343, 32, 75, 242, 1, 12, 1]
134  [1, 2, 3, 20, 1, 18, 343, 32, 75, 242, 1, 12, 169]
135  [1, 2, 3, 20, 169, 18, 343, 32, 75, 242, 1, 12, 1]
136  [1, 338, 3, 20, 1, 18, 343, 32, 75, 242, 1, 12, 1]
137  [169, 2, 3, 20, 1, 18, 343, 32, 75, 242, 1, 12, 1]
138  [1, 2, 3, 20, 1, 18, 343, 32, 75, 242, 1, 12, 371293]
139  [1, 2, 3, 20, 371293, 18, 343, 32, 75, 242, 1, 12, 1]
140  [371293, 2, 3, 20, 1, 18, 343, 32, 75, 242, 1, 12, 1]
141  [1, 2, 3, 20, 121, 18, 343, 32, 75, 2, 1, 12, 13]
142  [1, 2, 3, 20, 1573, 18, 343, 32, 75, 2, 1, 12, 1]
143  [13, 2, 3, 20, 121, 18, 343, 32, 75, 2, 1, 12, 1]
144  [1, 2, 3, 20, 121, 18, 343, 32, 75, 2, 1, 12, 169]
145  [1, 338, 3, 20, 121, 18, 343, 32, 75, 2, 1, 12, 1]
146  [169, 2, 3, 20, 121, 18, 343, 32, 75, 2, 1, 12, 1]
147  [1, 2, 3, 20, 121, 18, 343, 32, 75, 2, 1, 12, 371293]
148  [371293, 2, 3, 20, 121, 18, 343, 32, 75, 2, 1, 12, 1]
149  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 161051, 12, 13]
150  [1, 2, 3, 20, 13, 18, 343, 32, 75, 2, 161051, 12, 1]
151  [13, 2, 3, 20, 1, 18, 343, 32, 75, 2, 161051, 12, 1]
152  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 161051, 12, 169]
153  [1, 2, 3, 20, 169, 18, 343, 32, 75, 2, 161051, 12, 1]
154  [1, 338, 3, 20, 1, 18, 343, 32, 75, 2, 161051, 12, 1]
155  [169, 2, 3, 20, 1, 18, 343, 32, 75, 2, 161051, 12, 1]
156  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 161051, 12, 371293]
157  [1, 2, 3, 20, 371293, 18, 343, 32, 75, 2, 161051, 12, 1]
158  [371293, 2, 3, 20, 1, 18, 343, 32, 75, 2, 161051, 12, 1]
159  [1, 2, 3, 20, 161051, 18, 343, 32, 75, 2, 1, 12, 13]
160  [13, 2, 3, 20, 161051, 18, 343, 32, 75, 2, 1, 12, 1]
161  [1, 2, 3, 20, 161051, 18, 343, 32, 75, 2, 1, 12, 169]
162  [1, 338, 3, 20, 161051, 18, 343, 32, 75, 2, 1, 12, 1]
163  [169, 2, 3, 20, 161051, 18, 343, 32, 75, 2, 1, 12, 1]
164  [1, 2, 3, 20, 161051, 18, 343, 32, 75, 2, 1, 12, 371293]
165  [371293, 2, 3, 20, 161051, 18, 343, 32, 75, 2, 1, 12, 1]
166  [243, 10, 11, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21]
167  [243, 10, 11, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21]
168  [243, 10, 11, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21]
169  [243, 10, 11, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21]
170  [243, 10, 121, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21]
171  [243, 10, 121, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21]
172  [243, 10, 121, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21]
173  [243, 10, 121, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21]
174  [243, 10, 161051, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21]
175  [243, 10, 161051, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21]
176  [243, 10, 161051, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21]
177  [243, 10, 161051, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21]
178  [243, 10, 1331, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21]
179  [243, 10, 1331, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21]
180  [243, 10, 1331, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21]
181  [243, 10, 1331, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21]
182  [10, 11, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21, 22]
183  [10, 11, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21, 22]
184  [10, 11, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21, 22]
185  [10, 11, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21, 22]
186  [10, 11, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21, 242]
187  [10, 11, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21, 242]
188  [10, 11, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21, 242]
189  [10, 11, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21, 242]
190  [2, 11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 507, 22]
191  [2, 11, 12, 7, 50, 3, 32, 1, 18, 845, 28, 3, 22]
192  [2, 11, 12, 1183, 50, 3, 32, 1, 18, 5, 28, 3, 22]
193  [338, 11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 3, 22]
194  [2, 11, 12, 637, 50, 3, 32, 1, 18, 5, 28, 3, 22]
195  [2, 11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 507, 22]
196  [2, 11, 12, 49, 50, 3, 32, 1, 18, 845, 28, 3, 22]
197  [338, 11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 3, 22]
198  [2, 11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 507, 22]
199  [2, 11, 12, 16807, 50, 3, 32, 1, 18, 845, 28, 3, 22]
200  [338, 11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 3, 22]
201  [2, 3, 4, 5, 18, 7, 32, 3, 50, 11, 12, 2197, 98]
202  [2, 3, 4, 5, 18, 7, 32, 3, 50, 121, 12, 2197, 98]
203  [2, 3, 4, 5, 18, 847, 32, 3, 50, 1, 12, 2197, 98]
204  [2, 3, 4, 605, 18, 7, 32, 3, 50, 1, 12, 2197, 98]
205  [2, 3, 4, 5, 18, 7, 32, 3, 50, 161051, 12, 2197, 98]
206  [2, 3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 13, 98]
207  [2, 3, 52, 5, 18, 7, 32, 3, 50, 1331, 12, 1, 98]
208  [2, 3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 169, 98]
209  [2, 3, 4, 5, 18, 7, 32, 507, 50, 1331, 12, 1, 98]
210  [2, 3, 4, 845, 18, 7, 32, 3, 50, 1331, 12, 1, 98]
211  [2, 507, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 1, 98]
212  [2, 3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 371293, 98]
213  [2, 3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 2197, 98]
214  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 22, 13]
215  [11, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21, 22, 1]
216  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 22, 169]
217  [11, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21, 22, 1]
218  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 22, 371293]
219  [11, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21, 22, 1]
220  [11, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21, 22, 1]
221  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 242, 13]
222  [11, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21, 242, 1]
223  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 242, 169]
224  [11, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21, 242, 1]
225  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 242, 371293]
226  [11, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21, 242, 1]
227  [11, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21, 242, 1]
228  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 22, 13]
229  [11, 12, 13, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]
230  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 22, 169]
231  [11, 12, 169, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]
232  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 22, 371293]
233  [11, 12, 371293, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]
234  [11, 12, 2197, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]
235  [1, 12, 11, 14, 75, 32, 1, 18, 1, 20, 21, 2, 13]
236  [1, 12, 11, 14, 75, 32, 1, 18, 1, 20, 21, 2, 169]
237  [1, 12, 1859, 14, 75, 32, 1, 18, 1, 20, 21, 2, 1]
238  [1, 12, 11, 14, 75, 32, 1, 18, 1, 20, 21, 2, 371293]
239  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 242, 13]
240  [11, 12, 13, 14, 75, 32, 1, 18, 1, 20, 21, 242, 1]
241  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 242, 169]
242  [11, 12, 169, 14, 75, 32, 1, 18, 1, 20, 21, 242, 1]
243  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 242, 371293]
244  [11, 12, 371293, 14, 75, 32, 1, 18, 1, 20, 21, 242, 1]
245  [11, 12, 2197, 14, 75, 32, 1, 18, 1, 20, 21, 242, 1]
246  [1, 12, 121, 14, 75, 32, 1, 18, 1, 20, 21, 2, 13]
247  [1, 12, 1573, 14, 75, 32, 1, 18, 1, 20, 21, 2, 1]
248  [1, 12, 121, 14, 75, 32, 1, 18, 1, 20, 21, 2, 169]
249  [1, 12, 121, 14, 75, 32, 1, 18, 1, 20, 21, 2, 371293]
250  [1, 12, 161051, 14, 75, 32, 1, 18, 1, 20, 21, 2, 13]
251  [1, 12, 161051, 14, 75, 32, 1, 18, 1, 20, 21, 2, 169]
252  [1, 12, 161051, 14, 75, 32, 1, 18, 1, 20, 21, 2, 371293]
253  [11, 12, 2197, 2, 75, 32, 7, 18, 1, 20, 3, 242, 1]
254  [1, 12, 2197, 2, 75, 32, 847, 18, 1, 20, 3, 2, 1]
255  [1, 12, 2197, 242, 75, 32, 7, 18, 1, 20, 3, 2, 1]
256  [1, 12, 2197, 2, 75, 32, 539, 18, 1, 20, 3, 2, 1]
257  [11, 12, 2197, 2, 75, 32, 49, 18, 1, 20, 3, 242, 1]
258  [1, 12, 2197, 242, 75, 32, 49, 18, 1, 20, 3, 2, 1]
259  [11, 12, 2197, 2, 75, 32, 16807, 18, 1, 20, 3, 242, 1]
260  [1, 12, 2197, 242, 75, 32, 16807, 18, 1, 20, 3, 2, 1]
261  [11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 3, 22, 13]
262  [11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 3, 22, 169]
263  [11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 507, 22, 1]
264  [11, 12, 7, 50, 3, 32, 1, 18, 845, 28, 3, 22, 1]
265  [11, 12, 1183, 50, 3, 32, 1, 18, 5, 28, 3, 22, 1]
266  [11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 3, 22, 371293]
267  [11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 3, 22, 13]
268  [11, 12, 637, 50, 3, 32, 1, 18, 5, 28, 3, 22, 1]
269  [11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 3, 22, 169]
270  [11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 507, 22, 1]
271  [11, 12, 49, 50, 3, 32, 1, 18, 845, 28, 3, 22, 1]
272  [11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 3, 22, 371293]
273  [11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 3, 22, 13]
274  [11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 3, 22, 169]
275  [11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 507, 22, 1]
276  [11, 12, 16807, 50, 3, 32, 1, 18, 845, 28, 3, 22, 1]
277  [11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 3, 22, 371293]
278  [3, 4, 5, 18, 7, 32, 3, 50, 11, 12, 2197, 98, 45]
279  [3, 4, 5, 18, 7, 32, 3, 50, 121, 12, 2197, 98, 45]
280  [3, 4, 5, 18, 847, 32, 3, 50, 1, 12, 2197, 98, 45]
281  [3, 4, 605, 18, 7, 32, 3, 50, 1, 12, 2197, 98, 45]
282  [3, 4, 5, 18, 7, 32, 3, 50, 161051, 12, 2197, 98, 45]
283  [3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 13, 98, 45]
284  [3, 52, 5, 18, 7, 32, 3, 50, 1331, 12, 1, 98, 45]
285  [3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 169, 98, 45]
286  [3, 4, 5, 18, 7, 32, 507, 50, 1331, 12, 1, 98, 45]
287  [3, 4, 845, 18, 7, 32, 3, 50, 1331, 12, 1, 98, 45]
288  [507, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 1, 98, 45]
289  [3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 371293, 98, 45]
290  [3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 2197, 98, 45]
291  [3, 4, 5, 18, 1, 32, 147, 50, 1331, 12, 13, 2, 45]
292  [3, 52, 5, 18, 1, 32, 147, 50, 1331, 12, 1, 2, 45]
293  [3, 4, 5, 18, 1, 32, 147, 50, 1331, 12, 169, 2, 45]
294  [3, 4, 845, 18, 1, 32, 147, 50, 1331, 12, 1, 2, 45]
295  [507, 4, 5, 18, 1, 32, 147, 50, 1331, 12, 1, 2, 45]
296  [3, 4, 5, 18, 1, 32, 147, 50, 1331, 12, 371293, 2, 45]

Да, я уже не против публикации паттернов для $D(12,13)$.

 
 
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 14:12 
Yadryara в сообщении #1574265 писал(а):
Для этого неплохо бы глянуть на этот список из 57.
Выслал все списки на почту.

 
 
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 15:54 
Аватара пользователя
Dmitriy40, Спасибо.

Dmitriy40 в сообщении #1574123 писал(а):
Как например исключили 57шт паттернов с $22p^2$ на 32p+6?

46 я не исключил, а вот эти 11 прога исключила по модулю 13:

(11)

Код:
1   [1859, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]

2   [11, 12, 1, 14, 75, 32, 169, 18, 1, 20, 21, 22, 1]

3   [11, 12, 1, 14, 75, 32, 371293, 18, 1, 20, 21, 22, 1]

4   [11, 12, 1, 14, 75, 32, 13, 18, 1, 20, 21, 22, 1]


27   [11, 12, 1, 14, 15, 32, 169, 18, 1, 20, 21, 22, 1]

28   [11, 12, 1, 14, 15, 32, 371293, 18, 1, 20, 21, 22, 1]

29   [11, 12, 1, 14, 15, 32, 13, 18, 1, 20, 21, 22, 1]


59   [10, 1859, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 22]

60   [10, 11, 12, 1, 14, 15, 32, 1, 18, 169, 20, 21, 22]

61   [10, 11, 12, 1, 14, 15, 32, 1, 18, 371293, 20, 21, 22]

62   [10, 11, 12, 1, 14, 15, 32, 1, 18, 13, 20, 21, 22]


Ибо допустимые остатки по модулю 13 таковы:

Для $14p^2$ и $22p^2$ — 0, 1, 3, 4, 9, 10, 12;

Для $15p^2$ и $21p^2$ — 0, 2, 5, 6, 7, 8, 11.

 
 
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 16:55 
Ну мы все ждём когда же Вы найдёте ничем не запрещённый отсутствующий у Хуго паттерн ...

 
 
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 17:42 
Аватара пользователя
Dmitriy40 в сообщении #1574316 писал(а):
Ну мы все ждём когда же Вы найдёте ничем не запрещённый отсутствующий у Хуго паттерн ...

А кто это мы, позвольте полюбопытствовать :-)

Лично я уже не жду. Паттернов у Хьюго регулярно больше: на 48 для 11-к, на 36 для 12-к и на 234 для 13-к. Правда, возможно, от моего подсчёта, кроме увеличения уверенности, есть и ещё некоторая польза — в том чтобы не считать лишние две сотни паттернов.

 
 
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 17:52 
Две сотни паттернов, а они все минимум с двумя квадратами, уложатся скорее всего в одну минуту счёта. Так что их проще посчитать чем исключать.

 
 
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 21:20 
$D(12,12) = 120402988681658048433948$

Thank you again to everyone that contributed. Total CPU time reported in the collected log files was 19681323.72s (227.8 days), quite a bit faster than the last one (in large part thanks to the -W option inspired by Dmitriy's suggestions).

Before attempting $D(12,13)$, I plan to take some time to improve automation for distributed processing (probably with BOINC). I also want to make other improvements, such as extending support for -W to other cases and (hopefully) automating the selection of the -W and -g options, as well as improving documentation and testing.

 
 
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 22:15 
Аватара пользователя
Поздравляю всех!

Утундрий в сообщении #1573222 писал(а):
Интересует хоть сколько-нибудь обозримый итог столь бурной деятельности.
EUgeneUS в сообщении #1573230 писал(а):
Если всех и за весь период - то многие итоги сведены в первом сообщении темы.
Если недавние, то это новое значение в A292580

Почему-то EUgeneUS ни слова не сказал об итогах, которые подводились в стартовом посте 100-й страницы.

Некоторые итоги нынче таковы:

$\tikz[scale=.08]{
\fill[green!90!blue!50] (10,220) rectangle (130,230);
\draw[step=10cm] (0,210) grid +(160,20);
\node at (5,225)  {\text{len}};
\node at (15,225){\text{1}};
\node at (25,225){\text{2}};
\node at (35,225){\text{3}};
\node at (45,225){\text{4}};
\node at (55,225){\text{5}};
\node at (65,225){\text{6}};
\node at (75,225){\text{7}};
\node at (85,225){\text{8}};
\node at (95,225){\text{9}};
\node at (105,225){\text{10}};
\node at (115,225){\text{11}};
\node at (125,225){\text{12}};
\node at (135,225){\text{13}};
\node at (145,225){\text{14}};
\node at (155,225){\text{15}};
\node at (5,215){\text{12}};
\node at (15,215)[red]{\text{5.91}};
\node at (25,215)[red]{\text{3.68}};
\node at (35,215)[red]{\text{2.10}};
\node at (45,215){\text{1.85}};
\node at (55,215){\text{1.58}};
\node at (65,215){\text{1.91}};
\node at (75,215){\text{1.96}};
\node at (85,215){\text{1.90}};
\node at (95,215){\text{1.58}};
\node at (105,215){\text{1.88}};
\node at (115,215){\text{1.95}};
\node at (125,215){\text{1.79}};
\node at (135,215){\text{1.85}};
\node at (145,215)[red]{\text{2.07}};
\node at (155,215){\text{1.96}};
}$

Светло-зелёным обозначены те длины цепочек с 12-ю делителями, минимальность которых Hugo считает доказанной. В нижней строчке — кэф Hugo. Согласно этому кэфу наиболее перспективной для дальнейшего уменьшения является текущая наименьшая 14-ка.

По состоянию на 18 декабря 2022 года по сравнению с таблицей от 11-го апреля того же года

10-ка уменьшена в 238 раз;
11-ка уменьшена в 1055 раз;
12-ка уменьшена в 1564 разa;
__________________________
13-ка уменьшена в 3294 раза;
14-ка уменьшена в 2489 раз;
15-ка уменьшена в 827 раз.

 
 
 
 Re: Пентадекатлон мечты
Сообщение19.12.2022, 08:25 
Аватара пользователя
Huz в сообщении #1574334 писал(а):
$D(12,12) = 120402988681658048433948$


Ура! Мои поздравления!

-- 19.12.2022, 08:38 --

Yadryara в сообщении #1574340 писал(а):
. В нижней строчке — кэф Hugo


А как он считается? Я что-то пропустил....

Если погадать на трендах, то
1. В случае квадратичного тренда (логарифм числа от длины цепочки):
а) 13-ка чуть ниже тренда (как и минимальная 12-ка)
б) 14-ка заметно выше.
в) 15-ка очень близко к тренду.

2. В случае линейного тренда,
а) 13-ка выше тренда, но довольно близко к нему.
б) 14-ка и 15-ка заметно выше тренда.

 
 
 
 Re: Пентадекатлон мечты
Сообщение19.12.2022, 10:23 
Аватара пользователя
EUgeneUS в сообщении #1574372 писал(а):
А как он считается?

Считается он очень просто, через праймориал:

$\dfrac{\ln1966089440441196672524986345512345}{\ln(2\cdot3\cdot5\cdot7\cdot11\cdot13\cdot17\cdot19\cdot23\cdot29\cdot31\cdot37\cdot41\cdot43)}\approx 2.07$

 
 
 
 Re: Пентадекатлон мечты
Сообщение19.12.2022, 11:25 
Аватара пользователя
Yadryara
А почему внизу простые до 43?

 
 
 [ Сообщений: 3218 ]  На страницу Пред.  1 ... 188, 189, 190, 191, 192, 193, 194 ... 215  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group