2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1 ... 188, 189, 190, 191, 192, 193, 194 ... 215  След.
 
 Re: Пентадекатлон мечты
Сообщение17.12.2022, 07:15 


05/06/22
293
Yadryara в сообщении #1574124 писал(а):
Hugo, у Вас, видимо, ошибка в "Lemma 7" на странице https://github.com/hvds/divrep/wiki/D(12,k)-calculation#wiki-pages-box.

Правильно $18q$, а не $18q^2$.
Thanks, now fixed.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение17.12.2022, 09:39 
Аватара пользователя


29/04/13
8307
Богородский
Теперь получилось весьма много: 4990 паттернов. Буду разбираться.

Довольно очевидно, что легальных паттернов такого вида для 14-ки должно быть меньше чем для 13-ки, а для 15-ки — ещё меньше чем для 14-ки.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 04:05 
Аватара пользователя


29/04/13
8307
Богородский
Yadryara в сообщении #1574135 писал(а):
Теперь получилось весьма много: 4990 паттернов. Буду разбираться.

Нашёл ошибку. Переход от 11-к к 12-кам был прост и я его сделал безошибочно. А вот от 12-к к 13-кам...

3704 паттерна нашлось.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 05:19 
Аватара пользователя


29/04/13
8307
Богородский
Dmitriy40 в сообщении #1574123 писал(а):
останется 3938 паттернов, из которых 530 с квадратами.
[..]
Как например исключили 57шт паттернов с $22p^2$ на 32p+6?

296 у меня с квадратами.

С $22p^2$ у меня всего 46:

(46)

Код:
1  [10, 11, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21, 22]
2  [10, 11, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21, 22]
3  [10, 11, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21, 22]
4  [10, 11, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21, 22]
5  [2, 11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 507, 22]
6  [2, 11, 12, 7, 50, 3, 32, 1, 18, 845, 28, 3, 22]
7  [2, 11, 12, 1183, 50, 3, 32, 1, 18, 5, 28, 3, 22]
8  [338, 11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 3, 22]
9  [2, 11, 12, 637, 50, 3, 32, 1, 18, 5, 28, 3, 22]
10  [2, 11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 507, 22]
11  [2, 11, 12, 49, 50, 3, 32, 1, 18, 845, 28, 3, 22]
12  [338, 11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 3, 22]
13  [2, 11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 507, 22]
14  [2, 11, 12, 16807, 50, 3, 32, 1, 18, 845, 28, 3, 22]
15  [338, 11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 3, 22]
16  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 22, 13]
17  [11, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21, 22, 1]
18  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 22, 169]
19  [11, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21, 22, 1]
20  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 22, 371293]
21  [11, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21, 22, 1]
22  [11, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21, 22, 1]
23  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 22, 13]
24  [11, 12, 13, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]
25  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 22, 169]
26  [11, 12, 169, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]
27  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 22, 371293]
28  [11, 12, 371293, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]
29  [11, 12, 2197, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]
30  [11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 3, 22, 13]
31  [11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 3, 22, 169]
32  [11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 507, 22, 1]
33  [11, 12, 7, 50, 3, 32, 1, 18, 845, 28, 3, 22, 1]
34  [11, 12, 1183, 50, 3, 32, 1, 18, 5, 28, 3, 22, 1]
35  [11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 3, 22, 371293]
36  [11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 3, 22, 13]
37  [11, 12, 637, 50, 3, 32, 1, 18, 5, 28, 3, 22, 1]
38  [11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 3, 22, 169]
39  [11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 507, 22, 1]
40  [11, 12, 49, 50, 3, 32, 1, 18, 845, 28, 3, 22, 1]
41  [11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 3, 22, 371293]
42  [11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 3, 22, 13]
43  [11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 3, 22, 169]
44  [11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 507, 22, 1]
45  [11, 12, 16807, 50, 3, 32, 1, 18, 845, 28, 3, 22, 1]
46  [11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 3, 22, 371293]


Все $22p^2$ у меня на 38-м месте.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 10:43 
Аватара пользователя


29/04/13
8307
Богородский
Dmitriy40 в сообщении #1574123 писал(а):
Как например исключили 57шт паттернов с $22p^2$ на 32p+6?

Для этого неплохо бы глянуть на этот список из 57. Скорее всего, прога исключила только 11 из них.

Dmitriy40 в сообщении #1574123 писал(а):
из которых 530 с квадратами.

А у меня 296 с квадратами. И по-хорошему надо бы разобраться с, как минимум, 234 не совпавшими паттернами с квадратами. Вот мои 296:

(sq>0)

Код:
1  [9, 10, 11, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21]
2  [9, 10, 11, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21]
3  [9, 10, 11, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21]
4  [9, 10, 11, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21]
5  [9, 10, 121, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21]
6  [9, 10, 121, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21]
7  [9, 10, 121, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21]
8  [9, 10, 121, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21]
9  [9, 10, 161051, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21]
10  [9, 10, 161051, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21]
11  [9, 10, 161051, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21]
12  [9, 10, 161051, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21]
13  [9, 10, 1331, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21]
14  [9, 10, 1331, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21]
15  [9, 10, 1331, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21]
16  [9, 10, 1331, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21]
17  [1, 2, 3, 4, 5, 18, 7, 32, 3, 50, 11, 12, 2197]
18  [1, 2, 3, 4, 5, 18, 7, 32, 3, 50, 121, 12, 2197]
19  [1, 2, 3, 4, 5, 18, 847, 32, 3, 50, 1, 12, 2197]
20  [1, 2, 3, 4, 605, 18, 7, 32, 3, 50, 1, 12, 2197]
21  [1, 2, 363, 4, 5, 18, 7, 32, 3, 50, 1, 12, 2197]
22  [1, 2, 3, 4, 5, 18, 7, 32, 3, 50, 161051, 12, 2197]
23  [1, 2, 3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 13]
24  [1, 2, 3, 52, 5, 18, 7, 32, 3, 50, 1331, 12, 1]
25  [1, 2, 3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 169]
26  [1, 2, 3, 4, 5, 18, 7, 32, 507, 50, 1331, 12, 1]
27  [1, 2, 3, 4, 845, 18, 7, 32, 3, 50, 1331, 12, 1]
28  [1, 2, 507, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 1]
29  [1, 2, 3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 371293]
30  [1, 2, 3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 2197]
31  [1, 2, 3, 4, 5, 18, 49, 32, 3, 50, 11, 12, 2197]
32  [1, 2, 3, 4, 5, 18, 539, 32, 3, 50, 1, 12, 2197]
33  [1, 2, 3, 4, 5, 18, 49, 32, 3, 50, 121, 12, 2197]
34  [1, 2, 3, 4, 605, 18, 49, 32, 3, 50, 1, 12, 2197]
35  [1, 2, 363, 4, 5, 18, 49, 32, 3, 50, 1, 12, 2197]
36  [1, 2, 3, 4, 5, 18, 49, 32, 3, 50, 161051, 12, 2197]
37  [1, 2, 3, 4, 5, 18, 49, 32, 3, 50, 1331, 12, 13]
38  [1, 2, 3, 52, 5, 18, 49, 32, 3, 50, 1331, 12, 1]
39  [1, 2, 3, 4, 5, 18, 49, 32, 3, 50, 1331, 12, 169]
40  [1, 2, 3, 4, 5, 18, 49, 32, 507, 50, 1331, 12, 1]
41  [1, 2, 3, 4, 845, 18, 49, 32, 3, 50, 1331, 12, 1]
42  [1, 2, 507, 4, 5, 18, 49, 32, 3, 50, 1331, 12, 1]
43  [1, 2, 3, 4, 5, 18, 49, 32, 3, 50, 1331, 12, 371293]
44  [1, 2, 3, 4, 5, 18, 49, 32, 3, 50, 1331, 12, 2197]
45  [1, 2, 3, 4, 5, 18, 16807, 32, 3, 50, 11, 12, 2197]
46  [1, 2, 3, 4, 5, 18, 16807, 32, 3, 50, 121, 12, 2197]
47  [1, 2, 3, 4, 605, 18, 16807, 32, 3, 50, 1, 12, 2197]
48  [1, 2, 363, 4, 5, 18, 16807, 32, 3, 50, 1, 12, 2197]
49  [1, 2, 3, 4, 5, 18, 16807, 32, 3, 50, 161051, 12, 2197]
50  [1, 2, 3, 4, 5, 18, 16807, 32, 3, 50, 1331, 12, 13]
51  [1, 2, 3, 52, 5, 18, 16807, 32, 3, 50, 1331, 12, 1]
52  [1, 2, 3, 4, 5, 18, 16807, 32, 3, 50, 1331, 12, 169]
53  [1, 2, 3, 4, 5, 18, 16807, 32, 507, 50, 1331, 12, 1]
54  [1, 2, 3, 4, 845, 18, 16807, 32, 3, 50, 1331, 12, 1]
55  [1, 2, 507, 4, 5, 18, 16807, 32, 3, 50, 1331, 12, 1]
56  [1, 2, 3, 4, 5, 18, 16807, 32, 3, 50, 1331, 12, 371293]
57  [1, 2, 3, 4, 5, 18, 16807, 32, 3, 50, 1331, 12, 2197]
58  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 11, 12, 13]
59  [13, 2, 3, 4, 5, 18, 343, 32, 3, 50, 11, 12, 1]
60  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 11, 12, 169]
61  [1, 2, 3, 4, 5, 18, 343, 32, 507, 50, 11, 12, 1]
62  [1, 2, 3, 4, 845, 18, 343, 32, 3, 50, 11, 12, 1]
63  [1, 338, 3, 4, 5, 18, 343, 32, 3, 50, 11, 12, 1]
64  [169, 2, 3, 4, 5, 18, 343, 32, 3, 50, 11, 12, 1]
65  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 11, 12, 371293]
66  [371293, 2, 3, 4, 5, 18, 343, 32, 3, 50, 11, 12, 1]
67  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 11, 12, 2197]
68  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 121, 12, 13]
69  [13, 2, 3, 4, 5, 18, 343, 32, 3, 50, 121, 12, 1]
70  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 121, 12, 169]
71  [1, 2, 3, 4, 5, 18, 343, 32, 507, 50, 121, 12, 1]
72  [1, 2, 3, 4, 845, 18, 343, 32, 3, 50, 121, 12, 1]
73  [1, 338, 3, 4, 5, 18, 343, 32, 3, 50, 121, 12, 1]
74  [169, 2, 3, 4, 5, 18, 343, 32, 3, 50, 121, 12, 1]
75  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 121, 12, 371293]
76  [371293, 2, 3, 4, 5, 18, 343, 32, 3, 50, 121, 12, 1]
77  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 121, 12, 2197]
78  [1, 2, 3, 4, 605, 18, 343, 32, 3, 50, 1, 12, 13]
79  [13, 2, 3, 4, 605, 18, 343, 32, 3, 50, 1, 12, 1]
80  [1, 2, 3, 4, 605, 18, 343, 32, 3, 50, 1, 12, 169]
81  [1, 2, 3, 4, 605, 18, 343, 32, 507, 50, 1, 12, 1]
82  [1, 338, 3, 4, 605, 18, 343, 32, 3, 50, 1, 12, 1]
83  [169, 2, 3, 4, 605, 18, 343, 32, 3, 50, 1, 12, 1]
84  [1, 2, 3, 4, 605, 18, 343, 32, 3, 50, 1, 12, 371293]
85  [371293, 2, 3, 4, 605, 18, 343, 32, 3, 50, 1, 12, 1]
86  [1, 2, 3, 4, 605, 18, 343, 32, 3, 50, 1, 12, 2197]
87  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 161051, 12, 13]
88  [13, 2, 3, 4, 5, 18, 343, 32, 3, 50, 161051, 12, 1]
89  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 161051, 12, 169]
90  [1, 2, 3, 4, 5, 18, 343, 32, 507, 50, 161051, 12, 1]
91  [1, 2, 3, 4, 845, 18, 343, 32, 3, 50, 161051, 12, 1]
92  [1, 338, 3, 4, 5, 18, 343, 32, 3, 50, 161051, 12, 1]
93  [169, 2, 3, 4, 5, 18, 343, 32, 3, 50, 161051, 12, 1]
94  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 161051, 12, 371293]
95  [371293, 2, 3, 4, 5, 18, 343, 32, 3, 50, 161051, 12, 1]
96  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 161051, 12, 2197]
97  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 1331, 12, 13]
98  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 1331, 12, 169]
99  [1, 2, 3, 4, 5, 18, 343, 32, 507, 50, 1331, 12, 1]
100  [1, 2, 3, 4, 845, 18, 343, 32, 3, 50, 1331, 12, 1]
101  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 1331, 12, 371293]
102  [1, 2, 3, 4, 5, 18, 343, 32, 3, 50, 1331, 12, 2197]
103  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 11, 12, 13]
104  [1, 2, 3, 20, 13, 18, 343, 32, 75, 2, 11, 12, 1]
105  [13, 2, 3, 20, 1, 18, 343, 32, 75, 2, 11, 12, 1]
106  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 11, 12, 169]
107  [1, 2, 3, 20, 169, 18, 343, 32, 75, 2, 11, 12, 1]
108  [1, 338, 3, 20, 1, 18, 343, 32, 75, 2, 11, 12, 1]
109  [169, 2, 3, 20, 1, 18, 343, 32, 75, 2, 11, 12, 1]
110  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 11, 12, 371293]
111  [1, 2, 3, 20, 371293, 18, 343, 32, 75, 2, 11, 12, 1]
112  [371293, 2, 3, 20, 1, 18, 343, 32, 75, 2, 11, 12, 1]
113  [1, 2, 3, 20, 11, 18, 343, 32, 75, 2, 1, 12, 13]
114  [13, 2, 3, 20, 11, 18, 343, 32, 75, 2, 1, 12, 1]
115  [1, 2, 3, 20, 11, 18, 343, 32, 75, 2, 1, 12, 169]
116  [1, 2, 3, 20, 1859, 18, 343, 32, 75, 2, 1, 12, 1]
117  [1, 338, 3, 20, 11, 18, 343, 32, 75, 2, 1, 12, 1]
118  [169, 2, 3, 20, 11, 18, 343, 32, 75, 2, 1, 12, 1]
119  [1, 2, 3, 20, 11, 18, 343, 32, 75, 2, 1, 12, 371293]
120  [371293, 2, 3, 20, 11, 18, 343, 32, 75, 2, 1, 12, 1]
121  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 121, 12, 13]
122  [1, 2, 3, 20, 13, 18, 343, 32, 75, 2, 121, 12, 1]
123  [13, 2, 3, 20, 1, 18, 343, 32, 75, 2, 121, 12, 1]
124  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 121, 12, 169]
125  [1, 2, 3, 20, 169, 18, 343, 32, 75, 2, 121, 12, 1]
126  [1, 338, 3, 20, 1, 18, 343, 32, 75, 2, 121, 12, 1]
127  [169, 2, 3, 20, 1, 18, 343, 32, 75, 2, 121, 12, 1]
128  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 121, 12, 371293]
129  [1, 2, 3, 20, 371293, 18, 343, 32, 75, 2, 121, 12, 1]
130  [371293, 2, 3, 20, 1, 18, 343, 32, 75, 2, 121, 12, 1]
131  [1, 2, 3, 20, 1, 18, 343, 32, 75, 242, 1, 12, 13]
132  [1, 2, 3, 20, 13, 18, 343, 32, 75, 242, 1, 12, 1]
133  [13, 2, 3, 20, 1, 18, 343, 32, 75, 242, 1, 12, 1]
134  [1, 2, 3, 20, 1, 18, 343, 32, 75, 242, 1, 12, 169]
135  [1, 2, 3, 20, 169, 18, 343, 32, 75, 242, 1, 12, 1]
136  [1, 338, 3, 20, 1, 18, 343, 32, 75, 242, 1, 12, 1]
137  [169, 2, 3, 20, 1, 18, 343, 32, 75, 242, 1, 12, 1]
138  [1, 2, 3, 20, 1, 18, 343, 32, 75, 242, 1, 12, 371293]
139  [1, 2, 3, 20, 371293, 18, 343, 32, 75, 242, 1, 12, 1]
140  [371293, 2, 3, 20, 1, 18, 343, 32, 75, 242, 1, 12, 1]
141  [1, 2, 3, 20, 121, 18, 343, 32, 75, 2, 1, 12, 13]
142  [1, 2, 3, 20, 1573, 18, 343, 32, 75, 2, 1, 12, 1]
143  [13, 2, 3, 20, 121, 18, 343, 32, 75, 2, 1, 12, 1]
144  [1, 2, 3, 20, 121, 18, 343, 32, 75, 2, 1, 12, 169]
145  [1, 338, 3, 20, 121, 18, 343, 32, 75, 2, 1, 12, 1]
146  [169, 2, 3, 20, 121, 18, 343, 32, 75, 2, 1, 12, 1]
147  [1, 2, 3, 20, 121, 18, 343, 32, 75, 2, 1, 12, 371293]
148  [371293, 2, 3, 20, 121, 18, 343, 32, 75, 2, 1, 12, 1]
149  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 161051, 12, 13]
150  [1, 2, 3, 20, 13, 18, 343, 32, 75, 2, 161051, 12, 1]
151  [13, 2, 3, 20, 1, 18, 343, 32, 75, 2, 161051, 12, 1]
152  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 161051, 12, 169]
153  [1, 2, 3, 20, 169, 18, 343, 32, 75, 2, 161051, 12, 1]
154  [1, 338, 3, 20, 1, 18, 343, 32, 75, 2, 161051, 12, 1]
155  [169, 2, 3, 20, 1, 18, 343, 32, 75, 2, 161051, 12, 1]
156  [1, 2, 3, 20, 1, 18, 343, 32, 75, 2, 161051, 12, 371293]
157  [1, 2, 3, 20, 371293, 18, 343, 32, 75, 2, 161051, 12, 1]
158  [371293, 2, 3, 20, 1, 18, 343, 32, 75, 2, 161051, 12, 1]
159  [1, 2, 3, 20, 161051, 18, 343, 32, 75, 2, 1, 12, 13]
160  [13, 2, 3, 20, 161051, 18, 343, 32, 75, 2, 1, 12, 1]
161  [1, 2, 3, 20, 161051, 18, 343, 32, 75, 2, 1, 12, 169]
162  [1, 338, 3, 20, 161051, 18, 343, 32, 75, 2, 1, 12, 1]
163  [169, 2, 3, 20, 161051, 18, 343, 32, 75, 2, 1, 12, 1]
164  [1, 2, 3, 20, 161051, 18, 343, 32, 75, 2, 1, 12, 371293]
165  [371293, 2, 3, 20, 161051, 18, 343, 32, 75, 2, 1, 12, 1]
166  [243, 10, 11, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21]
167  [243, 10, 11, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21]
168  [243, 10, 11, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21]
169  [243, 10, 11, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21]
170  [243, 10, 121, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21]
171  [243, 10, 121, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21]
172  [243, 10, 121, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21]
173  [243, 10, 121, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21]
174  [243, 10, 161051, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21]
175  [243, 10, 161051, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21]
176  [243, 10, 161051, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21]
177  [243, 10, 161051, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21]
178  [243, 10, 1331, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21]
179  [243, 10, 1331, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21]
180  [243, 10, 1331, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21]
181  [243, 10, 1331, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21]
182  [10, 11, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21, 22]
183  [10, 11, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21, 22]
184  [10, 11, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21, 22]
185  [10, 11, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21, 22]
186  [10, 11, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21, 242]
187  [10, 11, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21, 242]
188  [10, 11, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21, 242]
189  [10, 11, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21, 242]
190  [2, 11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 507, 22]
191  [2, 11, 12, 7, 50, 3, 32, 1, 18, 845, 28, 3, 22]
192  [2, 11, 12, 1183, 50, 3, 32, 1, 18, 5, 28, 3, 22]
193  [338, 11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 3, 22]
194  [2, 11, 12, 637, 50, 3, 32, 1, 18, 5, 28, 3, 22]
195  [2, 11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 507, 22]
196  [2, 11, 12, 49, 50, 3, 32, 1, 18, 845, 28, 3, 22]
197  [338, 11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 3, 22]
198  [2, 11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 507, 22]
199  [2, 11, 12, 16807, 50, 3, 32, 1, 18, 845, 28, 3, 22]
200  [338, 11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 3, 22]
201  [2, 3, 4, 5, 18, 7, 32, 3, 50, 11, 12, 2197, 98]
202  [2, 3, 4, 5, 18, 7, 32, 3, 50, 121, 12, 2197, 98]
203  [2, 3, 4, 5, 18, 847, 32, 3, 50, 1, 12, 2197, 98]
204  [2, 3, 4, 605, 18, 7, 32, 3, 50, 1, 12, 2197, 98]
205  [2, 3, 4, 5, 18, 7, 32, 3, 50, 161051, 12, 2197, 98]
206  [2, 3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 13, 98]
207  [2, 3, 52, 5, 18, 7, 32, 3, 50, 1331, 12, 1, 98]
208  [2, 3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 169, 98]
209  [2, 3, 4, 5, 18, 7, 32, 507, 50, 1331, 12, 1, 98]
210  [2, 3, 4, 845, 18, 7, 32, 3, 50, 1331, 12, 1, 98]
211  [2, 507, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 1, 98]
212  [2, 3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 371293, 98]
213  [2, 3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 2197, 98]
214  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 22, 13]
215  [11, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21, 22, 1]
216  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 22, 169]
217  [11, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21, 22, 1]
218  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 22, 371293]
219  [11, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21, 22, 1]
220  [11, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21, 22, 1]
221  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 242, 13]
222  [11, 12, 13, 14, 15, 32, 1, 18, 1, 20, 21, 242, 1]
223  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 242, 169]
224  [11, 12, 169, 14, 15, 32, 1, 18, 1, 20, 21, 242, 1]
225  [11, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 242, 371293]
226  [11, 12, 371293, 14, 15, 32, 1, 18, 1, 20, 21, 242, 1]
227  [11, 12, 2197, 14, 15, 32, 1, 18, 1, 20, 21, 242, 1]
228  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 22, 13]
229  [11, 12, 13, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]
230  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 22, 169]
231  [11, 12, 169, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]
232  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 22, 371293]
233  [11, 12, 371293, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]
234  [11, 12, 2197, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]
235  [1, 12, 11, 14, 75, 32, 1, 18, 1, 20, 21, 2, 13]
236  [1, 12, 11, 14, 75, 32, 1, 18, 1, 20, 21, 2, 169]
237  [1, 12, 1859, 14, 75, 32, 1, 18, 1, 20, 21, 2, 1]
238  [1, 12, 11, 14, 75, 32, 1, 18, 1, 20, 21, 2, 371293]
239  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 242, 13]
240  [11, 12, 13, 14, 75, 32, 1, 18, 1, 20, 21, 242, 1]
241  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 242, 169]
242  [11, 12, 169, 14, 75, 32, 1, 18, 1, 20, 21, 242, 1]
243  [11, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 242, 371293]
244  [11, 12, 371293, 14, 75, 32, 1, 18, 1, 20, 21, 242, 1]
245  [11, 12, 2197, 14, 75, 32, 1, 18, 1, 20, 21, 242, 1]
246  [1, 12, 121, 14, 75, 32, 1, 18, 1, 20, 21, 2, 13]
247  [1, 12, 1573, 14, 75, 32, 1, 18, 1, 20, 21, 2, 1]
248  [1, 12, 121, 14, 75, 32, 1, 18, 1, 20, 21, 2, 169]
249  [1, 12, 121, 14, 75, 32, 1, 18, 1, 20, 21, 2, 371293]
250  [1, 12, 161051, 14, 75, 32, 1, 18, 1, 20, 21, 2, 13]
251  [1, 12, 161051, 14, 75, 32, 1, 18, 1, 20, 21, 2, 169]
252  [1, 12, 161051, 14, 75, 32, 1, 18, 1, 20, 21, 2, 371293]
253  [11, 12, 2197, 2, 75, 32, 7, 18, 1, 20, 3, 242, 1]
254  [1, 12, 2197, 2, 75, 32, 847, 18, 1, 20, 3, 2, 1]
255  [1, 12, 2197, 242, 75, 32, 7, 18, 1, 20, 3, 2, 1]
256  [1, 12, 2197, 2, 75, 32, 539, 18, 1, 20, 3, 2, 1]
257  [11, 12, 2197, 2, 75, 32, 49, 18, 1, 20, 3, 242, 1]
258  [1, 12, 2197, 242, 75, 32, 49, 18, 1, 20, 3, 2, 1]
259  [11, 12, 2197, 2, 75, 32, 16807, 18, 1, 20, 3, 242, 1]
260  [1, 12, 2197, 242, 75, 32, 16807, 18, 1, 20, 3, 2, 1]
261  [11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 3, 22, 13]
262  [11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 3, 22, 169]
263  [11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 507, 22, 1]
264  [11, 12, 7, 50, 3, 32, 1, 18, 845, 28, 3, 22, 1]
265  [11, 12, 1183, 50, 3, 32, 1, 18, 5, 28, 3, 22, 1]
266  [11, 12, 7, 50, 3, 32, 1, 18, 5, 28, 3, 22, 371293]
267  [11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 3, 22, 13]
268  [11, 12, 637, 50, 3, 32, 1, 18, 5, 28, 3, 22, 1]
269  [11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 3, 22, 169]
270  [11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 507, 22, 1]
271  [11, 12, 49, 50, 3, 32, 1, 18, 845, 28, 3, 22, 1]
272  [11, 12, 49, 50, 3, 32, 1, 18, 5, 28, 3, 22, 371293]
273  [11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 3, 22, 13]
274  [11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 3, 22, 169]
275  [11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 507, 22, 1]
276  [11, 12, 16807, 50, 3, 32, 1, 18, 845, 28, 3, 22, 1]
277  [11, 12, 16807, 50, 3, 32, 1, 18, 5, 28, 3, 22, 371293]
278  [3, 4, 5, 18, 7, 32, 3, 50, 11, 12, 2197, 98, 45]
279  [3, 4, 5, 18, 7, 32, 3, 50, 121, 12, 2197, 98, 45]
280  [3, 4, 5, 18, 847, 32, 3, 50, 1, 12, 2197, 98, 45]
281  [3, 4, 605, 18, 7, 32, 3, 50, 1, 12, 2197, 98, 45]
282  [3, 4, 5, 18, 7, 32, 3, 50, 161051, 12, 2197, 98, 45]
283  [3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 13, 98, 45]
284  [3, 52, 5, 18, 7, 32, 3, 50, 1331, 12, 1, 98, 45]
285  [3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 169, 98, 45]
286  [3, 4, 5, 18, 7, 32, 507, 50, 1331, 12, 1, 98, 45]
287  [3, 4, 845, 18, 7, 32, 3, 50, 1331, 12, 1, 98, 45]
288  [507, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 1, 98, 45]
289  [3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 371293, 98, 45]
290  [3, 4, 5, 18, 7, 32, 3, 50, 1331, 12, 2197, 98, 45]
291  [3, 4, 5, 18, 1, 32, 147, 50, 1331, 12, 13, 2, 45]
292  [3, 52, 5, 18, 1, 32, 147, 50, 1331, 12, 1, 2, 45]
293  [3, 4, 5, 18, 1, 32, 147, 50, 1331, 12, 169, 2, 45]
294  [3, 4, 845, 18, 1, 32, 147, 50, 1331, 12, 1, 2, 45]
295  [507, 4, 5, 18, 1, 32, 147, 50, 1331, 12, 1, 2, 45]
296  [3, 4, 5, 18, 1, 32, 147, 50, 1331, 12, 371293, 2, 45]

Да, я уже не против публикации паттернов для $D(12,13)$.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 14:12 
Заслуженный участник


20/08/14
11867
Россия, Москва
Yadryara в сообщении #1574265 писал(а):
Для этого неплохо бы глянуть на этот список из 57.
Выслал все списки на почту.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 15:54 
Аватара пользователя


29/04/13
8307
Богородский
Dmitriy40, Спасибо.

Dmitriy40 в сообщении #1574123 писал(а):
Как например исключили 57шт паттернов с $22p^2$ на 32p+6?

46 я не исключил, а вот эти 11 прога исключила по модулю 13:

(11)

Код:
1   [1859, 12, 1, 14, 75, 32, 1, 18, 1, 20, 21, 22, 1]

2   [11, 12, 1, 14, 75, 32, 169, 18, 1, 20, 21, 22, 1]

3   [11, 12, 1, 14, 75, 32, 371293, 18, 1, 20, 21, 22, 1]

4   [11, 12, 1, 14, 75, 32, 13, 18, 1, 20, 21, 22, 1]


27   [11, 12, 1, 14, 15, 32, 169, 18, 1, 20, 21, 22, 1]

28   [11, 12, 1, 14, 15, 32, 371293, 18, 1, 20, 21, 22, 1]

29   [11, 12, 1, 14, 15, 32, 13, 18, 1, 20, 21, 22, 1]


59   [10, 1859, 12, 1, 14, 15, 32, 1, 18, 1, 20, 21, 22]

60   [10, 11, 12, 1, 14, 15, 32, 1, 18, 169, 20, 21, 22]

61   [10, 11, 12, 1, 14, 15, 32, 1, 18, 371293, 20, 21, 22]

62   [10, 11, 12, 1, 14, 15, 32, 1, 18, 13, 20, 21, 22]


Ибо допустимые остатки по модулю 13 таковы:

Для $14p^2$ и $22p^2$ — 0, 1, 3, 4, 9, 10, 12;

Для $15p^2$ и $21p^2$ — 0, 2, 5, 6, 7, 8, 11.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 16:55 
Заслуженный участник


20/08/14
11867
Россия, Москва
Ну мы все ждём когда же Вы найдёте ничем не запрещённый отсутствующий у Хуго паттерн ...

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 17:42 
Аватара пользователя


29/04/13
8307
Богородский
Dmitriy40 в сообщении #1574316 писал(а):
Ну мы все ждём когда же Вы найдёте ничем не запрещённый отсутствующий у Хуго паттерн ...

А кто это мы, позвольте полюбопытствовать :-)

Лично я уже не жду. Паттернов у Хьюго регулярно больше: на 48 для 11-к, на 36 для 12-к и на 234 для 13-к. Правда, возможно, от моего подсчёта, кроме увеличения уверенности, есть и ещё некоторая польза — в том чтобы не считать лишние две сотни паттернов.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 17:52 
Заслуженный участник


20/08/14
11867
Россия, Москва
Две сотни паттернов, а они все минимум с двумя квадратами, уложатся скорее всего в одну минуту счёта. Так что их проще посчитать чем исключать.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 21:20 


05/06/22
293
$D(12,12) = 120402988681658048433948$

Thank you again to everyone that contributed. Total CPU time reported in the collected log files was 19681323.72s (227.8 days), quite a bit faster than the last one (in large part thanks to the -W option inspired by Dmitriy's suggestions).

Before attempting $D(12,13)$, I plan to take some time to improve automation for distributed processing (probably with BOINC). I also want to make other improvements, such as extending support for -W to other cases and (hopefully) automating the selection of the -W and -g options, as well as improving documentation and testing.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение18.12.2022, 22:15 
Аватара пользователя


29/04/13
8307
Богородский
Поздравляю всех!

Утундрий в сообщении #1573222 писал(а):
Интересует хоть сколько-нибудь обозримый итог столь бурной деятельности.
EUgeneUS в сообщении #1573230 писал(а):
Если всех и за весь период - то многие итоги сведены в первом сообщении темы.
Если недавние, то это новое значение в A292580

Почему-то EUgeneUS ни слова не сказал об итогах, которые подводились в стартовом посте 100-й страницы.

Некоторые итоги нынче таковы:

$\tikz[scale=.08]{
\fill[green!90!blue!50] (10,220) rectangle (130,230);
\draw[step=10cm] (0,210) grid +(160,20);
\node at (5,225)  {\text{len}};
\node at (15,225){\text{1}};
\node at (25,225){\text{2}};
\node at (35,225){\text{3}};
\node at (45,225){\text{4}};
\node at (55,225){\text{5}};
\node at (65,225){\text{6}};
\node at (75,225){\text{7}};
\node at (85,225){\text{8}};
\node at (95,225){\text{9}};
\node at (105,225){\text{10}};
\node at (115,225){\text{11}};
\node at (125,225){\text{12}};
\node at (135,225){\text{13}};
\node at (145,225){\text{14}};
\node at (155,225){\text{15}};
\node at (5,215){\text{12}};
\node at (15,215)[red]{\text{5.91}};
\node at (25,215)[red]{\text{3.68}};
\node at (35,215)[red]{\text{2.10}};
\node at (45,215){\text{1.85}};
\node at (55,215){\text{1.58}};
\node at (65,215){\text{1.91}};
\node at (75,215){\text{1.96}};
\node at (85,215){\text{1.90}};
\node at (95,215){\text{1.58}};
\node at (105,215){\text{1.88}};
\node at (115,215){\text{1.95}};
\node at (125,215){\text{1.79}};
\node at (135,215){\text{1.85}};
\node at (145,215)[red]{\text{2.07}};
\node at (155,215){\text{1.96}};
}$

Светло-зелёным обозначены те длины цепочек с 12-ю делителями, минимальность которых Hugo считает доказанной. В нижней строчке — кэф Hugo. Согласно этому кэфу наиболее перспективной для дальнейшего уменьшения является текущая наименьшая 14-ка.

По состоянию на 18 декабря 2022 года по сравнению с таблицей от 11-го апреля того же года

10-ка уменьшена в 238 раз;
11-ка уменьшена в 1055 раз;
12-ка уменьшена в 1564 разa;
__________________________
13-ка уменьшена в 3294 раза;
14-ка уменьшена в 2489 раз;
15-ка уменьшена в 827 раз.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение19.12.2022, 08:25 
Аватара пользователя


11/12/16
14039
уездный город Н
Huz в сообщении #1574334 писал(а):
$D(12,12) = 120402988681658048433948$


Ура! Мои поздравления!

-- 19.12.2022, 08:38 --

Yadryara в сообщении #1574340 писал(а):
. В нижней строчке — кэф Hugo


А как он считается? Я что-то пропустил....

Если погадать на трендах, то
1. В случае квадратичного тренда (логарифм числа от длины цепочки):
а) 13-ка чуть ниже тренда (как и минимальная 12-ка)
б) 14-ка заметно выше.
в) 15-ка очень близко к тренду.

2. В случае линейного тренда,
а) 13-ка выше тренда, но довольно близко к нему.
б) 14-ка и 15-ка заметно выше тренда.

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение19.12.2022, 10:23 
Аватара пользователя


29/04/13
8307
Богородский
EUgeneUS в сообщении #1574372 писал(а):
А как он считается?

Считается он очень просто, через праймориал:

$\dfrac{\ln1966089440441196672524986345512345}{\ln(2\cdot3\cdot5\cdot7\cdot11\cdot13\cdot17\cdot19\cdot23\cdot29\cdot31\cdot37\cdot41\cdot43)}\approx 2.07$

 Профиль  
                  
 
 Re: Пентадекатлон мечты
Сообщение19.12.2022, 11:25 
Аватара пользователя


11/12/16
14039
уездный город Н
Yadryara
А почему внизу простые до 43?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3218 ]  На страницу Пред.  1 ... 188, 189, 190, 191, 192, 193, 194 ... 215  След.

Модераторы: Karan, Toucan, PAV, maxal, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group