2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 106, 107, 108, 109, 110, 111, 112 ... 215  След.
 
 Re: Пентадекатлон мечты
Сообщение08.08.2022, 19:16 
Аватара пользователя
VAL в сообщении #1562145 писал(а):
Хотя в достижение конечной цели - нахождение и обоснование минимальной пятнашки, по-прежнему, не верится.

Это да, всё ещё сомнительно. Грядёт переписывание кода, но возьмётся ли кто-нибудь за енто переписывание — неизвестно. Я ленюсь учить Асм.

Ну так что насчёт 100-й страницы? Присылать?

 
 
 
 Re: Пентадекатлон мечты
Сообщение08.08.2022, 21:32 

(Оффтоп)

Не вижу пока действительно значимого повода что-то переписывать (потому что тоже ленюсь): пусть даже компиляция занимает хоть 90% времени, на интервалах в дни (или несколько недель) всё равно проще смириться, чем тратить усилия на переписывание. Проще уж ускорить компиляцию (вдвое-втрое) за счёт замедления потом счёта, общий выигрыш всё равно будет.
Асм выучить несложно, проблематичнее разобраться как процессор внутри устроен и работает, а это важнее.

 
 
 
 Re: Пентадекатлон мечты
Сообщение08.08.2022, 23:12 
VAL в сообщении #1562145 писал(а):
Хотя в достижение конечной цели - нахождение и обоснование минимальной пятнашки, по-прежнему, не верится.
(Хотя, может я отстал от жизни? Не следил за развитием этого направления.)

I think I'm the only person actively working towards such a goal.

I've spent the last 2-3 weeks working to convert my Perl code into a pure C program. There are quite a few items still on my to-do list, but the basic code is working now (at least for the $k \le 3$ cases I'm currently testing); the process is also opening up opportunities for new optimizations (chiefly: unpacking the factorization code to test all values of a chain in parallel).

It will take a few more weeks before I will really know what it can achieve - converting all my Pell-solver code will be particularly painful since it uses a bunch of functional programming techniques (though it might be possible to leave that as a separate daemon process that the C progam can talk to). Meanwhile the Perl code is about a third of the way through an (estimated) 85-day run to prove T(6,10) minimal.

 
 
 
 Re: Пентадекатлон мечты
Сообщение09.08.2022, 23:06 
$M(180)\ge 9$

(Оффтоп)

2877060755179560955332188212433541773166398957451669128889733203929726143660300898387214566528706789375

$M(360)\ge 9$

(Оффтоп)

86911362785425845346271090933316791222253208757518405383976632498082329919761093572956270960179680591868

Любопытно, что с факторизацией последнего числа в девятке по 360 делителей Alpertron справляется в 5 раз быстрее yafu.
Там три примерно равных по порядку числа больших множителя.

 
 
 
 Re: Пентадекатлон мечты
Сообщение10.08.2022, 08:39 
Yadryara в сообщении #1562150 писал(а):
Ну так что насчёт 100-й страницы? Присылать?
Не понял, о какой странице речь :oops:

 
 
 
 Re: Пентадекатлон мечты
Сообщение10.08.2022, 12:51 
Аватара пользователя
Так вот же к Вам обращался три дня назад:

Yadryara в сообщении #1562009 писал(а):
VAL в сообщении #1557979 писал(а):
Но обязуюсь выкладывать обновленные таблицы, которые Вы мне будете высылать, взамен старых.

Вот и настала такая необходимость. Поскольку задачи минимизации мы считаем уже вчетвером. Стартовый пост темы не резиновый, так что прошу опубликовать и править мои таблицы и статистику в первом посте 100-й страницы, который как раз Ваш.

 
 
 
 Re: Пентадекатлон мечты
Сообщение10.08.2022, 13:24 
VAL в сообщении #1562310 писал(а):
Любопытно, что с факторизацией последнего числа в девятке по 360 делителей Alpertron справляется в 5 раз быстрее yafu.
Там три примерно равных по порядку числа больших множителя.
Я бы не сказал, с YAFU это очень сильно дело случая, как быстро найдёт меньший из трёх делителей (или даже не меньший), у меня вот Alpetron разлагал 6м47с, а YAFU справилась за (в порядке увеличения): 26с, дважды по 41с (нашла не наименьший), 48с, 54с, 82с, 121с, 122с, 175с (нашла не наименьший), ещё раз 10 не справилась за 2 минуты и оборвал (зря кстати, она после перебора 337 curves за 3 минуты переходит к SIQS на число C95 и за 12 минут в 4 потока гарантированно справляется). Во всех случаях основное время уходило на ECM стадию (поиск одного из трёх делителей), SIQS занимало 2-3с (в 4 потока).
Так что в 8 раз (у меня) она тормознее Alpetron-а только если брать гарантированное время в 3+12*4=51 минуты, но это просто повезло что большое составное имеет именно 95 цифр и происходит быстрый переход к SIQS стадии с фиксированным временем отработки.

Потому когда юзаю YAFU, то запускаю её раз 5-10-30 (на сколько терпения хватит) на пару-тройку минут счёта (цикл по 214 или 430 curves), вдруг что-то найдёт, можно будет указать большой делитель и продолжить. Вот если не нашла, то запускаю уже на десятки минут (и тоже несколько раз), потом на 2-3ч (тоже пока не надоест), потом на полсуток и только потом плюю и беру следующего кандидата. ;-) Вон 188 делителей она разложила с третьего раза за 12ч примерно, первые два раза 13ч-18ч не хватило.

-- 10.08.2022, 13:32 --

VAL
Вот интересно, для некоторых $M(k)$ верхняя граница $15<U(k)<31$, а бывает ли граница $7<U(k)<15$? Или всегда когда больше 7, то непременно возможна и 15? И если да, то почему такая разница с $15<U(k)<31$?
Я бы поискал цепочки с $7<U(k)<15$, это должно быть легче чем $U(k)=15$ ...

 
 
 
 Re: Пентадекатлон мечты
Сообщение10.08.2022, 14:57 
Yadryara в сообщении #1562336 писал(а):
Так вот же к Вам обращался три дня назад:
Yadryara в сообщении #1562009 писал(а):
VAL в сообщении #1557979 писал(а):
Но обязуюсь выкладывать обновленные таблицы, которые Вы мне будете высылать, взамен старых.

Вот и настала такая необходимость. Поскольку задачи минимизации мы считаем уже вчетвером. Стартовый пост темы не резиновый, так что прошу опубликовать и править мои таблицы и статистику в первом посте 100-й страницы, который как раз Ваш.
Ok. Присылайте.

PS: Я был в отъезде и не заглядывал в тему. А по возвращении просмотрел, что добавилось за время моего отсутствия. Как выясняется, в обоих смыслах слова "просмотрел" :-)

-- 10 авг 2022, 15:10 --

Dmitriy40 в сообщении #1562338 писал(а):
Вот интересно, для некоторых $M(k)$ верхняя граница $15<U(k)<31$, а бывает ли граница $7<U(k)<15$? Или всегда когда больше 7, то непременно возможна и 15? И если да, то почему такая разница с $15<U(k)<31$?

Насколько я понимаю, таких $k$, для которых $7<U(k)<15$, не бывает.
Если $k$ не кратно 12, то $M(k)\le 7$. Если же $k$ кратно 12, то гипотеза Диксона гарантирует, что $M(k)\ge 15$.

На сегодняшний день множество известных точных значений $M(k)$ таково: $\{1,2,3,5,7,15\}$. Полагаю, что следующее число в этом множестве 17 (максимум длин цепочек по 60 делителей).
В целом же описание множества значений $M(k)$ - открытая проблема. Но я уверен, что в промежутке от 7 до 15 ничего нет.

 
 
 
 Re: Пентадекатлон мечты
Сообщение10.08.2022, 17:22 
VAL в сообщении #1562347 писал(а):
Если $k$ не кратно 12, то $M(k)\le 7$. Если же $k$ кратно 12, то гипотеза Диксона гарантирует, что $M(k)\ge 15$.
Спасибо! Хоть и жаль.

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.08.2022, 10:57 
$M(360)\ge 10$

(Оффтоп)

208441204712727046095202894290122942755552076201167754844372284226951101666296395608715489807377223856956522492

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.08.2022, 11:46 
Аватара пользователя
Ура! Актуальные на сегодняшний день таблицы уже опубликованы на 100-й странице настоящей темы.

Уже вижу опечатку(не мою). Но... я не планирую беспокоить уважаемого VAL просьбами о правках чаще чем раз в неделю.

 
 
 
 Re: Пентадекатлон мечты
Сообщение11.08.2022, 16:05 
В связи с расширением номенклатуры компьютеров для счёта 14-ки и 15-ки снова встал вопрос об разнице в скорости SSE и AVX2 ускорителей. Когда-то такой тест уже проводил, но искать его в данной теме непросто, так что провёл снова. Взял два ускорителя из выложенных в облаке для счёта M12, один SSE версию, второй AVX2 версию, и запустил каждый под gp32 и gp64 в одинаковых условиях (всё под x64 виндой, какова будет скорость под x32 виндой не знаю, но заметных отличий в первой строке быть не должно, хотя если будут, то вероятнее в сторону ускорения, а остальные строки просто не запустятся):
gp32, SSE: N=197530, 51.980s / 8.143s in PARI
gp32, AVX2: N=197530, 23.198s / 8.565s in PARI
gp64, SSE: N=197530, 47.014s / 3.666s in PARI
gp64, AVX2: N=197530, 18.126s / 3.448s in PARI
Разница между первым и вторым или между третьим и четвёртым временем и есть разница в скорости ускорителей.
Для полного комплекта из 46080 ускорителей разница немного просядет, думаю где-то до двух раз или чуть менее.
И эта разница должна немного зависеть от конкретного процессора, данные отношения верны лишь для моего процессора, как будет на другом неизвестно (оценить можно, но очень сложно), может как уменьшиться, так и увеличиться. У меня проц на ядре Haswel с эффективной частотой 3.3ГГц и кэшем L3 в 6М.

 
 
 
 Re: Пентадекатлон мечты
Сообщение12.08.2022, 07:17 
Аватара пользователя
Вашему вниманию предлагается таблица наименьших известных непрерывных 14-к до наименьшего Пентадекатлона. Внимание! Это таблица о другом, не о том, о чём табличка на 108-й странице.

Здесь представлена единственная новинка, но зато какая: находка Демиса в 310-м комплекте, который он скомпилировал самостоятельно менее чем за 50 минут ! (После обсуждения в триумвирате с Dmitriy40 и впс.)

Как видим, мой тезис

Yadryara в сообщении #1561723 писал(а):
вероятность найти здесь 15-шку в 8-9 раз ниже, чем непрерывную 14-ку.

всё ещё перевыполнен: одна 15-шка на 7 непрерывных 14-к.


$\tikz[scale=.08]{
\fill[green!70!blue] (0,135) rectangle (156,145);
\draw  (0,210) rectangle  (10,220);
\draw  (10,210) rectangle  (94,220);
\draw  (94,210) rectangle  (107,220);
\draw  (107,210) rectangle  (139,220);
\draw  (139,210) rectangle  (146,220);
\draw  (146,210) rectangle  (156,220);
\draw  (0,200) rectangle  (10,210);
\draw  (10,200) rectangle  (94,210);
\draw  (94,200) rectangle  (107,210);
\draw  (107,200) rectangle  (139,210);
\draw  (139,200) rectangle  (146,210);
\draw  (146,200) rectangle  (156,210);
\draw  (0,190) rectangle  (10,200);
\draw  (10,190) rectangle  (94,200);
\draw  (94,190) rectangle  (107,200);
\draw  (107,190) rectangle  (139,200);
\draw  (139,190) rectangle  (146,200);
\draw  (146,190) rectangle  (156,200);
\draw  (0,180) rectangle  (10,190);
\draw  (10,180) rectangle  (94,190);
\draw  (94,180) rectangle  (107,190);
\draw  (107,180) rectangle  (139,190);
\draw  (139,180) rectangle  (146,190);
\draw  (146,180) rectangle  (156,190);
\draw  (0,170) rectangle  (10,180);
\draw  (10,170) rectangle  (94,180);
\draw  (94,170) rectangle  (107,180);
\draw  (107,170) rectangle  (139,180);
\draw  (139,170) rectangle  (146,180);
\draw  (146,170) rectangle  (156,180);
\draw  (0,160) rectangle  (10,170);
\draw  (10,160) rectangle  (94,170);
\draw  (94,160) rectangle  (107,170);
\draw  (107,160) rectangle  (139,170);
\draw  (139,160) rectangle  (146,170);
\draw  (146,160) rectangle  (156,170);
\draw  (0,150) rectangle  (10,160);
\draw  (10,150) rectangle  (94,160);
\draw  (94,150) rectangle  (107,160);
\draw  (107,150) rectangle  (139,160);
\draw  (139,150) rectangle  (146,160);
\draw  (146,150) rectangle  (156,160);
\draw  (0,135) rectangle  (10,145);
\draw  (10,135) rectangle  (94,145);
\draw  (94,135) rectangle  (107,145);
\draw  (107,135) rectangle  (139,145);
\draw  (139,135) rectangle  (146,145);
\draw  (146,135) rectangle  (156,145);
\node at (5.2,215) {\text{1.}};
\node at (53,215){\text{566219997030344639985349043045409945}};
\node at (100.3,215){\text{20}};
\node at (123,215){\text{N2-36-27143A}};
\node at (142.4,215){\text{1}};
\node at (150.8,215){\text{Na}};
\node at (5.2,205) {\text{2.}};
\node at (53,205){\text{959528951460462204646421950146143641}};
\node at (100.3,205){\text{20}};
\node at (123,205){\text{S2-34-764215}};
\node at (142.4,205){\text{F}};
\node at (150.8,205){\text{An}};
\node at (5.2,195) {\text{3.}};
\node at (52,195){\text{1096498735329146833535591491104451545}};
\node at (100.3,195){\text{21}};
\node at (123,195){\text{N9-24-826315}};
\node at (142.4,195){\text{1}};
\node at (150.8,195){\text{An}};
\node at (5.2,185) {\text{4.}};
\node at (52,185){\text{1608866392835868597645176729504328345}};
\node at (100.3,185){\text{21}};
\node at (123,185){\text{N9-26-124953}};
\node at (142.4,185){\text{1}};
\node at (150.8,185){\text{An}};
\node at (5.2,175) {\text{5.}};
\node at (52,175){\text{2252869147370754564640677821513423641}};
\node at (100.3,175){\text{21}};
\node at (123,175){\text{S2-36-548132}};
\node at (142.4,175){\text{F}};
\node at (150.8,175){\text{An}};
\node at (5.2,165) {\text{6.}};
\node at (52,165){\text{4400767817056948144578127394427047641}};
\node at (100.3,165){\text{20}};
\node at (123,165){\text{S2-32-2A7153}};
\node at (142.4,165){\text{F}};
\node at (150.8,165){\text{De}};
\node at (5.2,155) {\text{7.}};
\node at (52,155){\text{4894738132059472206526016135636567641}};
\node at (100.3,155){\text{21}};
\node at (123,155){\text{S9-45-234165}};
\node at (142.4,155){\text{1}};
\node at (150.8,155){\text{Dm}};
\node at (52,140){\text{5400788496821420197301806862543165145}};
\node at (100.3,140){\text{19}};
\node at (123,140){\text{N2-51-74A213}};
\node at (150.8,140){\text{Na}};
}$


Слева направо:

1. Место непрерывной 14-ки по возрастанию.

2. Первое число цепочки из 15-ти.

3. Количество найденных простых.

4. Уникальное имя паттерна.

5. Шестнадцатеричный порядковый номер места с плохим числом.

6. Кто нашёл:

Аn — Anton
De — Demis
Dm — Dmitriy
Na — Natalia

ALL-овская 14-ка только одна — на последнем 7-м месте.

 
 
 
 Re: Пентадекатлон мечты
Сообщение12.08.2022, 07:40 
$M(720)\ge 9$

(Оффтоп)

8493584623630867289106650093883096774759632400269620415683898311604563089451956906603498871003342961328129

Как обычно для $k$, кратного 60, просьба, уточнить оценку сверху.

 
 
 
 Re: Пентадекатлон мечты
Сообщение12.08.2022, 14:54 
VAL в сообщении #1562523 писал(а):
$M(720)\ge 9$
Как обычно для $k$, кратного 60, просьба, уточнить оценку сверху.

I have $M(720) \le 127$.

The result is actually for $n+5$, final digits should be "..28124".

 
 
 [ Сообщений: 3218 ]  На страницу Пред.  1 ... 106, 107, 108, 109, 110, 111, 112 ... 215  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group