2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 64, 65, 66, 67, 68, 69, 70 ... 215  След.
 
 Re: Пентадекатлон мечты
Сообщение01.06.2022, 10:03 
Yadryara в сообщении #1556060 писал(а):
У них ни в 9.3 ни в 9.2 нет ни одного результата совпадающего с нынешними рекордами.
Понятие "нынешний рекорд", IMHO, очень зыбкое. Иное дело - абсолютный рекорд.
Именно поэтому свой последний успех $M(48)\ge20$ я ставлю ниже, чем нахождение пятнашки по 12 делителей. $M(12)=15$ - это уже навсегда.
То же, но в большей степени, касается наименьших цепочек. Наименьшая цепочка - это интересно (хотя для меня значительно менее интересно, чем самая длинная цепочка), а наименьшая на сегодняшний день - это преходяще.

 
 
 
 Re: Пентадекатлон мечты
Сообщение01.06.2022, 14:51 
Вынужден констатировать, что предмет моей гордости - мои таблицы, в свете наших последних теоретических достижений, утрачивают смысл :-(
По крайней мере, в нынешнем виде.
Отыскание троек с $k=2pq$ делителями и до того было делом нехитрым. Но все же при больших $k$ требовало некоторых временных затрат.
А теперь...
Цепочку из 3-x чисел, имеющих по 1474070 делителей ушло секунд 30 (это на медленном maple).
Не вижу трудностей в нахождении троек чисел, количество делителей коих превышает миллиард или триллион...
Но и смысла не вижу. Ни в какую таблицу они не влезут... Да и процесс занесения с разы более трудоемок, чем процесс нахождения.

Полагаю, от графы $k=3$ надо избавляться. В подробных таблицах это не подлежит сомнению. Думаю, как поступить с краткой таблицей (где перечислены только $k$, без начальных чисел цепочек). Какие будут предложения?

 
 
 
 Re: Пентадекатлон мечты
Сообщение01.06.2022, 18:47 
Аватара пользователя
VAL в сообщении #1556062 писал(а):
Именно поэтому свой последний успех $M(48)\ge20$ я ставлю ниже, чем нахождение пятнашки по 12 делителей. $M(12)=15$ - это уже навсегда.

Ну я понял к чему Вы клоните. Надо скидываться на прижизненный памятник Dmitriy40. А то ведь придётся ставить Дмитрию 40 памятников по всему миру...

 
 
 
 Re: Пентадекатлон мечты
Сообщение01.06.2022, 21:06 
Yadryara в сообщении #1556095 писал(а):
Какие будут предложения?
Предложений - море! :wink:
Предлагаю Вашему вниманию сильно похудевшую основную таблицу. Пока не размещал ее у себя в Марафоне. Буду благодарен за указание на ошибки. В старой таковых было полно. Но я понимаю, почему за годы ее существования мне указали всего на одну. Десятки страниц отпугивают и подавляют. Надеюсь урезанный вариант не вызовет такого трепета и мандража.

Заодно привожу краткую таблицу со всеми $k$, для которых доказано $M(k)=3$. Обратите внимание, что последнее число в соответствующей графе превышает миллиард. Так что, при желании эту таблицу можно пополнить миллионами чисел. Но, лично у меня такого желания нет :-)

-- 01 июн 2022, 21:31 --

Кстати, числа в цепочке с более чем миллиардом делителей всего-то 387-значные. Для сравнения, например, числа в цепочке с 6482-я делителями 709-значные.


У вас нет доступа для просмотра вложений в этом сообщении.

 
 
 
 Re: Пентадекатлон мечты
Сообщение02.06.2022, 06:24 
Аватара пользователя
VAL
В основной таблице не все "тройки" удалены, как минимум $458$ осталось.
Одна из таблиц называется "All even k...", хотя в ней приведена и "двойка".
И главное, если раньше при отсутствии чётного числа делителей в таблице следовало, что для него $M(k)$ неизвестно, то сейчас это не следует.

 
 
 
 Re: Пентадекатлон мечты
Сообщение02.06.2022, 07:09 
EUgeneUS в сообщении #1556115 писал(а):
VAL
В основной таблице не все "тройки" удалены, как минимум $458$ осталось.
Одна из таблиц называется "All even k...", хотя в ней приведена и "двойка".
И главное, если раньше при отсутствии чётного числа делителей в таблице следовало, что для него $M(k)$ неизвестно, то сейчас это не следует.
Спасибо!
1. 458 изгнал.
2. А что, разве двойка не "even"? Тут неувязка, как раз, в том, что таблица называется не "All_even_k...", а "All_even_M(k)...". Переименовал.
3. Сейчас из заголовка таблицы известно, что $M(k)$ либо неизвестно, либо не больше 3. Полагаю подробнее эти "либо" следует описывать не в шапке таблицы, а том месте, откуда будет ссылка на таблицу.

 
 
 
 Re: Пентадекатлон мечты
Сообщение02.06.2022, 09:26 
Аватара пользователя
VAL
по п.3. это, конечно, следует из заголовка. Но вот например, отсутствуют значения для $46$ и $48$, как понять неискушённому читателю - какое из них отсутствует, потому что цепочки длинные и максимальная не найдена, или потому что там "тривиальная тройка"?
Может быть, имеет смысл включить строки для ненайденных цепочек с нижними оценками для $M(k)$?

 
 
 
 Re: Пентадекатлон мечты
Сообщение02.06.2022, 13:07 
И с верхними! :mrgreen: Не каждый помнит как она рассчитывается (я вот не помню).
Хотя для недоказанных $M(k)$ лучше пожалуй сделать отдельную таблицу, где и привести ограничения сверху (теоретические) и снизу (текущие). И можно вероятно ограничиться лишь до $k<1000$, уместится на страницу. Включать ли в неё $M(k)\le3$ не уверен, возможно проще их все найти чем включать в таблицу.
Сейчас этой информации, по недоказанным $M(k)$, за исключением буквально нескольких длинных на странице VAL, видимо вообще нигде в общем доступе нет? Hugo сделал, но лишь до $k\le100$, этого мало, можно же относительно несложно доказать ещё порядочно разных $k$ (и я не про $M(k)\le3$).


А тем временем не обнаружил в таблицах $k=116$, что странно, ведь ранее предлагалось считать $k=124$, потому запустил счёт и нашёл (потребовалось часов 7):

(Длинные строки)

9201651266233225096535762443629067246832120416868499380798317095365198606142862067625079883053750472039134860577513140453563342576646439203239954784512519836425781246: 116,116,116,116,116
16407933344236712537828931021040318088959433932262731981407355395230924281269736131322437391233053132364677573855668449634815691600104283427996760045215487480163574218749: 116,116,116,116,116,116
92096192799400634242211122637180697153580211425424891033768071544807693987273256416858474422044014762577814825041886894598032419865734514138203239954784512519836425781245: 116,116,116,116,116,116,116
Теперь и $M(116)=7$ можно считать доказанным, вместе с $M(124)=7$.

Кроме $k=116$ и $k=124$ также не обнаружил в таблицах вообще значений $M(4p), p>31$, для которых доказано что они все $M(4p)\le7$, но цепочки не найдены. А это можно сделать просто изменением степеней в уже полученных паттернах для $k=124, k=116$.


Ещё интересное наблюдение: запустил поиск следующего $k=148$ не по старым паттернам с двумя непроверяемыми числами, а расставил туда простые в первой степени и попытался искать все 7 огромных простых, так 5-ка и 6-ка нашлись за сравнимое с $k=116$ время (полчаса и часа три соответственно). Т.е. уменьшение вероятности из-за двух лишних простых повлияло, но не так уж значительно, раза в два-три, не порядки (зато для проверки не нужна замороченная факторизация, достаточно быстрой isprime). Посмотрим когда найдётся 7-ка, хватит ли полсуток, пока похоже потребуются десятки часов и оставлять непроверяемые всё же немного (в пару-тройку раз по времени) выгоднее.

 
 
 
 Re: Пентадекатлон мечты
Сообщение02.06.2022, 13:20 
Аватара пользователя
Dmitriy40 в сообщении #1556151 писал(а):
А тем временем не обнаружил в таблицах $k=116$, что странно, ведь ранее предлагалось считать $k=124$, потому запустил счёт и нашёл (потребовалось часов 7):

Зато в теме есть:

VAL в сообщении #1552344 писал(а):
Только что нашел 7-ку чисел, имеющих по 116 делителей (это максимальная длина цепочки).

Прошу прятать длиннющие числа в оффтоп. Вёрстка же меняется и очень неудобно читать.

 
 
 
 Re: Пентадекатлон мечты
Сообщение02.06.2022, 14:03 
Удалось доказать $M(d) \le 3$, когда $d \equiv \pm 2 \pmod{12}$ и $gcd(p_i - 1) = 2k \equiv 2 \pmod{4}$. Этот случай можно свести к уравнению $\frac{x^k \pm 1}{x \pm 1} = y^2$, которое является частным случаем Nagell-Ljunggren equation, отсутствие нетривиальных решений которого доказано.

 
 
 
 Re: Пентадекатлон мечты
Сообщение02.06.2022, 14:27 
Аватара пользователя
mathematician123
Wow! :appl: :appl:
Я же правильно понимаю, что тут
mathematician123 в сообщении #1556155 писал(а):
и $gcd(p_i - 1) = 2k \equiv 2 \pmod{4}$.

имеется в виду общий НОД для всех $p_i - 1$, то есть $p_i \in \left\lbrace 5, 7, 17 \right\rbrace$ удовлетиворяют условию?

А для доказательства гипотезы уважаемого VAL ("совсем общий случай"): $M(k) \le 3$, если $k \equiv \pm 2 \pmod{12}$ ещё что-то осталось? Или эта гипотеза уже доказана?

 
 
 
 Re: Пентадекатлон мечты
Сообщение02.06.2022, 14:33 
Прошу прощения, забыл упомянуть, что $k > 1$.

EUgeneUS в сообщении #1556158 писал(а):
А для доказательства гипотезы уважаемого VAL ("совсем общий случай"): $M(k) \le 3$, если $k \equiv \pm 2 \pmod{12}$ ещё что-то осталось? Или эта гипотеза уже доказана?

Остаётся случай $gcd(p_i-1) = 2$. $p_i$ - это простые нечётные делители $d$. А этот случай наиболее часто встречается.

 
 
 
 Re: Пентадекатлон мечты
Сообщение02.06.2022, 14:35 
Yadryara в сообщении #1556152 писал(а):
Зато в теме есть:
Вот в этом и беда: за 2.5 месяца VAL так и не удосужился добавить результат в таблицы. Может туда и ещё некоторые не добавили, которые я собрался считать ... :facepalm:

-- 02.06.2022, 15:23 --

Dmitriy40 в сообщении #1556151 писал(а):
Посмотрим когда найдётся 7-ка, хватит ли полсуток,
Хватило 9ч (вместо где-то 6ч), так что преимущество непроверяемых чисел уже совсем не столь очевидно.

(Длинные строки)

7198723320938862430231659990269391533497550348014071889277681132789912426887693950193442993531930531334075220389159988054105311574699899527698926921750454477188090545807074099361543218008213239954784512519836425781247: 148,148,148,148,148
368361774148022803653266724186284144429943421990252177585176646080858859877422712853387906358008286794655598578946318993507657353632953004044389727793949065691355167364331563091497285218008213239954784512519836425781246: 148,148,148,148,148,148
1447756079436676117654137919889606284938982246249420810969953602703073705497792409064947485280166762248496346979316279397070267523714231219714786142799206171958113179719247279756496905218008213239954784512519836425781245: 148,148,148,148,148,148,148
Теперь и $M(148)=7$ доказано.

 
 
 
 Re: Пентадекатлон мечты
Сообщение02.06.2022, 15:38 
Аватара пользователя
Dmitriy40 в сообщении #1556160 писал(а):
Может туда и ещё некоторые не добавили, которые я собрался считать

Вы не поверите, но и здесь есть простой способ: озвучивать что собираетесь считать.

 
 
 
 Re: Пентадекатлон мечты
Сообщение02.06.2022, 17:11 
Ладно: собираюсь считать все $M(4p), 40<p<50$. Потом верхнюю границу и немного дальше подвину.

 
 
 [ Сообщений: 3218 ]  На страницу Пред.  1 ... 64, 65, 66, 67, 68, 69, 70 ... 215  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group