2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 49, 50, 51, 52, 53, 54, 55 ... 215  След.
 
 Re: Пентадекатлон мечты
Сообщение03.05.2022, 10:12 
Аватара пользователя
Dmitriy40 в сообщении #1553771 писал(а):
Yadryara
Если я где-то не уследил за языком и какие-то слова оказались слишком резкими — приношу свои извинения, это вышло не специально.

Ваши извинения приняты.

Если мы расходимся во мнениях по каким-то вопросам, то обычно всё же стараюсь продолжать разговор вежливо и доброжелательно, даже если он затянулся.

kotenok gav, мой вопрос не риторический. Для того чтобы не считать одно и то же неплохо бы увидеть хоть какой-то рассказ о проверенных диапазонах и хоть о каких-то находках.

 
 
 
 Re: Пентадекатлон мечты
Сообщение03.05.2022, 10:25 
Мне пришлось временно приостановить программу в начале счёта, к сожалению... Перезапущу завтра или сегодня.

 
 
 
 Re: Пентадекатлон мечты
Сообщение03.05.2022, 15:33 
Аватара пользователя
Про 60 делителей.
При поиске снизу нашлась 8-ка и 9-ка:

Код:
R4-359:300965216689772607438130193130539289271986786198507928101147176963929227753687957499:  0,  1, 60, 60, 60, 60, 60, 60, 60, 60,  1,  valids=8, maxlen=8, ALL, FOUND!
R2-159:338756796788615226567495489902743921184562808204513666752545241159640291661917077499: 60, 60, 60, 60, 60, 60, 60, 60, 60,  1,  0,  valids=9, maxlen=9, ALL, FOUND!


Это должны быть цепочки с минимальными числами для данной системы паттернов.

 
 
 
 Re: Пентадекатлон мечты
Сообщение03.05.2022, 15:44 
EUgeneUS в сообщении #1553792 писал(а):
Кроме того, проверка на более мелких кругах дала бы очень приблизительную оценку - как бы повлиял 4-й поток на время счета остальных трех.
Наоборот, как раз это и самое правильное. Что подтверждается Вашими пунктами а) и б) ниже.
Что останавливать не хотелось понимаю.
Выигрыш от 4-го потока 23%, что конечно меньше теоретических 33%, но всё равно заметно.

Я же пока продолжал считать по Вашему модифицированному паттерну (с моими доработками), очень хочется сравнить его урожайность с исходным. И за 5-кратное количество попыток нашлось уже 19 восьмёрок (причём все не ALL!) и ни одной длиннее против двух восьмёрок и одной девятки (и все ALL), не считая Ваших находок.
И что ещё странно, восьмёрки сыпятся как-то очень неравномерно, например между 48e79 и 113e79 и между 148e79 и 225e79 ни одной, а потом две плотные тройки, 271e79, 272e79, 275e79, 328e79, 372e79, 374e79, 375e79, причём первая тройка вся из L паттернов (хотя и разных), а вторая из R.

EUgeneUS
Минимальная девятка это прекрасно!
:appl:
Это кстати аргумент в пользу проверок по всем низинам: Вы тоже нашли две восьмёрки и одну девятку, но за половинное от моих количество попыток.

 
 
 
 Re: Пентадекатлон мечты
Сообщение04.05.2022, 08:31 
Аватара пользователя
В 3е84 нашлась еще пара восьмерок.
В "низинах" (досчиталось до 0.5е84) новых находок нет.

 
 
 
 Re: Пентадекатлон мечты
Сообщение04.05.2022, 17:26 
Аватара пользователя
Нашел интересное в а-файле от Хуго:

Цитата:
# L(35) in range 3..4
T(35,1) 25920
T(35,2) 352576749375
T(35,3) 27596981361427143730623 Hugo van der Sanden 2022-04-13
T(35,4) unknown


Это единственная запись, у которой верхняя оценка $M(k) = L(k/2)$ четная.
Если у Хуго нет опечатки и, действительно, 5-ка запрещается, а четверка - разрешается. То было бы интересно её поискать... Там три больших простых и четвертая степень простого получается, насколько понимаю.
В чем интерес - со времен Эрдёша открыт вопрос бывают ли четные $M(k)$, кроме $M(2)=2$. И буде такое найдется, имхо, это будет круче, чем $M(12)=15$.

 
 
 
 Re: Пентадекатлон мечты
Сообщение04.05.2022, 18:55 
EUgeneUS в сообщении #1553851 писал(а):
Там три больших простых и четвертая степень простого получается, насколько понимаю.
Нет, там $pq^4r^6$, иначе $70$ не раскладывается.
Да, 5-ка запрещена:
1811.05127.pdf писал(а):
Lemma 4. Let p, q be (not necessary different) primes greater than 3. Then M(2pq) ≤ 4.
А в 4-ке обязательно будет большое простое в 4-й или 6-й степени, первую займёт двойка.
И почему-то в таблице VAL все $M(12k\pm2)=3$, никаких четвёрок и пятёрок нет. Подозрительно, может и правда даже четвёрок быть не может.

 
 
 
 Re: Пентадекатлон мечты
Сообщение04.05.2022, 19:30 
Аватара пользователя
Dmitriy40 в сообщении #1553862 писал(а):
Нет, там $pq^4r^6$, иначе $70$ не раскладывается.

Не очень понимаю тут слово "нет" :wink:
Для 4-ки будет две двойки (в четыре последовательных натуральных попадают ровно два четных числа), одну можно взять в $2^6$ (или $2^4$), а вторая будет "простой" двойкой. Это "съест" простое в одной позиции, и в этой позиции придется искать четвертую степень простого (или шестую степень, что ещё хуже, насколько понимаю).
В остальных трех позициях можно искать большое простое.

Dmitriy40 в сообщении #1553862 писал(а):
А в 4-ке обязательно будет большое простое в 4-й или 6-й степени, первую займёт двойка.

Об чём и речь.

Dmitriy40 в сообщении #1553862 писал(а):
Да, 5-ка запрещена:

Ага, это я пропустил. :roll:
Кстати, первое $k$ удовлетворяющее условиям леммы - это $50$, в файле Хуго для $L(25)$ стоит строгое равенство (тройке). Не знаю почему.
А значит, если не будет запрещена 4-ка для $k=70$, то это таки будет минимальным $k$, где возможно четное $M(k)$.

Dmitriy40 в сообщении #1553862 писал(а):
И почему-то в таблице
VAL все $M(12k\pm2)=3$,


Тем не менее, для $70$ в этой таблице записи нет.

-- 04.05.2022, 19:39 --

Следующее число делителей, удовлетворяющее лемме 4 - $98$, но и тут у Хуго стоит точное равенство тройке.

 
 
 
 Re: Пентадекатлон мечты
Сообщение04.05.2022, 19:50 
EUgeneUS в сообщении #1553869 писал(а):
Не очень понимаю тут слово "нет" :wink:
Это я не так Вас понял, думал Ваши слова относятся к каждому месту, какие варианты в нём могут быть, а не ко всей цепочке. А так то да, три больших простых и одно среднее в 4-й или 6-й степени.

 
 
 
 Re: Пентадекатлон мечты
Сообщение04.05.2022, 19:51 
Аватара пользователя
И ещё, в той же работе в качестве открытых проблем обозначены:
Цитата:
3. Is $k = 2$ the only value of k for which $M(k)$ is even?

Об этом была речь выше. Но и:
Цитата:
1. Are $M(k) = 3$ for all $k$ congruent to $\pm2$ modulo $12$ excluding $k = 2$?

Поэтому неудивительно, что все известные $M(k) = 3$, такие что $k$ congruent to $\pm2$ modulo $12$ excluding $k = 2$

 
 
 
 Re: Пентадекатлон мечты
Сообщение04.05.2022, 21:59 
Dmitriy40 в сообщении #1553862 писал(а):
И почему-то в таблице
VAL все $M(12k\pm2)=3$, никаких четвёрок и пятёрок нет. Подозрительно, может и правда даже четвёрок быть не может.
Полагаю, что $M(12k\pm2)=3$ всегда (кроме $M(2)$). Но доказано это (в нашей с Василием Дзюбенко статье) только для $k=2pq$, где НОД $p-1$ и $q-1$ не меньше 4.
При этом простые $p$ и $q$ не обязательно различны. В частности, $M(50)=M(98)=3$.

Мне кажется, что у меня где-то были доказательства $M(2pq)\le3$ для конкретных пар $p$ и $q$, не удовлетворяющих вышеприведенному условию. Но я не могу их ни найти, ни воспроизвести :-(

Кстати, попытался доказать $M(60)\le 15$. Но тоже пока не вышло.

 
 
 
 Re: Пентадекатлон мечты
Сообщение04.05.2022, 22:06 
Аватара пользователя
VAL

Правильно ли я понимаю, что если модулярная арифметика не запрещает какую-то длину цепочки, то наличие такой цепочки гарантируется гипотезой Диксона и её расширениями?
То есть, если $M(70)=4$ не запрещается модулярной арифметикой, то она есть (в предположении о верности гипотезы Диксона и её расширений)?

 
 
 
 Re: Пентадекатлон мечты
Сообщение04.05.2022, 22:27 
EUgeneUS в сообщении #1553889 писал(а):
Правильно ли я понимаю, что если модулярная арифметика не запрещает какую-то длину цепочки, то наличие такой цепочки гарантируется гипотезой Диксона
Нет, гипотеза Диксона тут не работает. Ее обобщений много. С ними надо разбираться отдельно.

 
 
 
 Re: Пентадекатлон мечты
Сообщение07.05.2022, 16:26 
Аватара пользователя
Новости по цепочкам с 60 делителями
а) досчитались полностью два непрерывных диапазона е84: 0-1е84 и 3-4е84.
б) в первом было пять восьмерок и одна девятка.
в) во втором было семь восьмерок и опять же одна девятка. Нашлась в самом конце диапазона, думал уже и не будет...

Такими темпами, находка 10-ки представляется вероятной за несколько недель (около 10), уже не мало. А вот с 11-кой всё становится грустно. Если, конечно, не увеличить скорость счёта на порядок, хотя бы и экстенсивным методом :-(

 
 
 
 Re: Пентадекатлон мечты
Сообщение08.05.2022, 14:52 
Начал считать с 12e84, пока резервирую лишь 12-13e84 на пару суток, там посмотрим как пойдёт.

-- 08.05.2022, 15:45 --

Да, по паттернам с 6-ю простыми, за 17трлн попыток нашлось 32шт восьмёрки и лишь одна сама последняя ALL. Девяток и длиннее не нашлось вообще.
При том что для 5-ти простых две восьмёрки и одна девятка (и все ALL) нашлись всего за 0.63трлн попыток.
Делаю вывод что вариант с 6-ю простыми сильно менее урожайный, либо я где-то ошибся.

 
 
 [ Сообщений: 3218 ]  На страницу Пред.  1 ... 49, 50, 51, 52, 53, 54, 55 ... 215  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group