2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 15, 16, 17, 18, 19, 20, 21 ... 71  След.
 
 Re: Что такое философия
Сообщение26.01.2021, 22:03 
Аватара пользователя
Да, я прочитал всю тему с начала. Ответа не увидел (не разглядел?)
В университете нам читали марксистско-ленинскую философию. От нее у меня ничего не осталось, кроме нескольких нелепых "законов диалектики", под которые можно подогнать все что угодно. Недавно натолкнулся на статью (философа?) Что такое диалектика?
Карл Р. Поппер, Вопросы философии.- 1995.- №1.- С. 118-138.
(Перевод Г.А. Новичковой)
которая, в общем, подтвердила мои ощущения.
Я так понимаю, философия должна давать методологию познания.
Но не дает.
А наука - дает.

-- 26.01.2021, 22:07 --

Mikhail_K в сообщении #1502825 писал(а):
peg59 в сообщении #1502819 писал(а):
Вот я, даже как дилетант, легко могу сказать, что является предметом математики
И что же?

Предметом математики являются числа и фигуры (в самом общем смысле слова) и взаимоотношения между ними.

 
 
 
 Re: Что такое философия
Сообщение26.01.2021, 22:21 
Аватара пользователя
peg59 в сообщении #1502875 писал(а):
кроме нескольких нелепых "законов диалектики", под которые можно подогнать все что угодно.
Так в этом и смысл той философии!! :D
Стряпать утверждения, под которые можно подогнать всё, что угодно. Этакая универсальная сова, натягивающаяся на любой глобус. Даже кубический или пирамидальный.

Wiki писал(а):
Филосо́фия (др.-греч. φιλοσοφία дословно «любомудрие; любовь к мудрости») — особая форма познания мира, вырабатывающая систему знаний о наиболее общих характеристиках, предельно-обобщающих понятиях и фундаментальных принципах реальности

 
 
 
 Re: Что такое философия
Сообщение26.01.2021, 22:32 
Аватара пользователя
peg59 в сообщении #1502875 писал(а):
Предметом математики являются числа и фигуры (в самом общем смысле слова) и взаимоотношения между ними.
Тут возникают философские вопросы: а что такое число и что такое фигура "в самом общем смысле слова"? (Математика на этот вопрос не отвечает, в ней есть определения лишь конкретным классам чисел и фигур, причём определения, как правило, даются в более абстрактных терминах и вопрос, чем же занимается математика, не проясняют.)
К тому же, что изучает например какая-нибудь теория банаховых алгебр - то ли "числа в общем смысле слова", то ли "фигуры в общем смысле слова" - вопрос тёмный.

 
 
 
 Re: Что такое философия
Сообщение26.01.2021, 22:39 
Аватара пользователя
peg59, предмет математики определить совсем не так легко, как может показаться на первый взгляд.
peg59 в сообщении #1502875 писал(а):
Предметом математики являются числа и фигуры (в самом общем смысле слова) и взаимоотношения между ними.

Это представление о математике школьника младших классов.
Вот, скажем, матлогику Вы куда отнесёте? К "числам"? Или "фигурам"? Или "отношениям между числами и фигурами"? Или, по-Вашему, это вообще не математика? :roll:

 
 
 
 Re: Что такое философия
Сообщение26.01.2021, 22:49 
Аватара пользователя
Odysseus в сообщении #1502831 писал(а):
peg59 в сообщении #1502819 писал(а):
Можно ли сформулировать достаточно четко, что является предметом философии?

Вы видели первый вопрос в этой теме и количество сообщений в ней? :-)

peg59 в сообщении #1502875 писал(а):
Да, я прочитал всю тему с начала. Ответа не увидел (не разглядел?)

У меня был риторически-иронический вопрос, который какбэ намекал, что "сформулировать достаточно четко, что является предметом философии" вряд ли представляется возможным. Как минимум, так чтобы большинство участников дискуссии с этим согласились.

Причем это сложно не только для философии, хотя бы потому, что слова "достаточно четко" и "предмет" каждый может понимать по-своему. А также потому, что такие определения будут сводиться к понятиям, которые тоже нужно будет как-то определить если мы хотим чтобы все было "четко". Например, если сказать, что "математика это теория структур и отношений между ними", то следующими вопросами могут быть "что такое структуры" и "что такое отношения". Но для философии, похоже, это еще сложнее чем для математики, естественных наук и многих других разделов и явлений в жизни.

 
 
 
 Re: Что такое философия
Сообщение26.01.2021, 23:29 
Аватара пользователя
Mihr в сообщении #1502882 писал(а):
peg59, предмет математики определить совсем не так легко, как может показаться на первый взгляд.
peg59 в сообщении #1502875 писал(а):
Предметом математики являются числа и фигуры (в самом общем смысле слова) и взаимоотношения между ними.

Это представление о математике школьника младших классов.
Вот, скажем, матлогику Вы куда отнесёте? К "числам"? Или "фигурам"? Или "отношениям между числами и фигурами"? Или, по-Вашему, это вообще не математика? :roll:

Мне понятна и близка позиция Арнольда, когда он говорит, что математика - это наука экспериментальная.
Что такое числа и фигуры, понятно уже дошколятам из доступного им опыта.
По мере углубления и расширения знания становятся доступными и более глубокие и общие абстракции.
А по поводу мат. логики, так еще и не все математики считают ее частью математики. Вот Вавилов вообще жалеет о потраченном на нее времени.

НЕ СОВСЕМ НАИВНАЯ ТЕОРИЯ МНОЖЕСТВ
MENGENLEHRE
Николай Вавилов

 
 
 
 Re: Что такое философия
Сообщение26.01.2021, 23:38 
Аватара пользователя
Odysseus в сообщении #1502887 писал(а):
Например, если сказать, что "математика это теория структур и отношений между ними", то следующими вопросами могут быть "что такое структуры" и "что такое отношения".
То, что термины приходится определять через другие термины, это не ново и не является специфичным для математики или философии.
Но термин "структуры" в принципе можно и не использовать, вводя вместо него более интуитивно понятный термин "абстракный/идеализированный обьект". Также необязательно говорить про "отношения":.

Например в таком ключе: предметом математики является

a) совокупность абстрактных понятий (в различной степени/мере имеющих отношение к окружающему миру: точка, прямая, угол, пространство, число, множество, зависимость и тд.),
b) некоторыe изначальныe/исходныe утверждения (аксиомы), в том числе об указанных выше понятиях, и
c) методы получения новых утверждений (теоремы) из аксиом с помощью оговорённых специальных правил вывода.

 
 
 
 Re: Что такое философия
Сообщение26.01.2021, 23:41 
Аватара пользователя
peg59 в сообщении #1502893 писал(а):
Что такое числа и фигуры, понятно уже дошколятам из доступного им опыта.

Надо было тогда сказать, что вы даете определение для дошкольников.

peg59 в сообщении #1502893 писал(а):
Вот Вавилов вообще жалеет о потраченном на нее времени.

Смелое заявление с вашей стороны...

Давно здесь не было людей, которые наконец выложат всю правду-матку о математике. Мы все вас ждали!

-- 26.01.2021, 12:46 --

Dan B-Yallay в сообщении #1502895 писал(а):
Например в таком ключе: предметом математики является

a) совокупность абстрактных понятий (в различной степени/мере имеющих отношение к окружающему миру: точка, прямая, угол, пространство, число, множество, зависимость и тд.),
b) некоторыe изначальныe/исходныe утверждения (аксиомы), в том числе об указанных выше понятиях, и
c) методы получения новых утверждений (теоремы) из аксиом с помощью оговорённых специальных правил вывода.

Лично я ничего не имею против. Но прежде всего потому, что мне проблемы "определения математики", "определения физики" и т.д. не кажутся очень важными. Хоть горшком назови, только в печь не ставь.

 
 
 
 Re: Что такое философия
Сообщение27.01.2021, 00:08 
Аватара пользователя
Роль логики в математике в целом такая же, как роль грамматики в лите-
ратурном творчестве. Как показывает опыт, знание грамматики не является,
вообще говоря, ни необходимым,ни достаточным для грамотного письма. Изу-
чение грамматики в школе может частично компенсировать отсутствие у уче-
ника навыка грамотности, но целью обучения как раз и является выработка
автоматизма, после чего все грамматические правила могут быть благополуч-
но забыты. Точно так же роль логики в математике состоит в том, чтобы
избегать очевидных ошибок в рассуждениях. Но одной из целей обучения ма-
тематике как раз и является выработка автоматизма, после чего логические
правила могут быть забыты. Более того, грамотному письму можно научить
и иначе, без формальной грамматики, “по образцам”.

Немногие математики дали себе труд познакомиться хотя бы с основами ло-
гики и никто из остальных не пострадал от своего невежества в этой области.
Во всяком случае можно встретить первокласных специалистов по математи-
ческому анализу, дифференциальным уравнениям или теории вероятностей,
которые никогда не слышали о “теории доказательств” или “языке первого
порядка”, что нисколько не мешает им делать замечательные математические
открытия...
Я думаю, что подавляющее большинство математиков подпишется под сле-
дующей фразой Юрия Манина: “Вероятно, логика способна обосновать мате-
матику не в большей мере, чем биология – обосновать жизнь”.

НЕ СОВСЕМ НАИВНАЯ ТЕОРИЯ МНОЖЕСТВ
MENGENLEHRE
Николай Вавилов

-- 27.01.2021, 00:13 --

Odysseus в сообщении #1502896 писал(а):
мне проблемы "определения математики", "определения физики" и т.д. не кажутся очень важными.

Речь идет не об определениях, а о предмете изучения.

 
 
 
 Re: Что такое философия
Сообщение27.01.2021, 00:22 
Аватара пользователя
peg59 в сообщении #1502899 писал(а):
Во всяком случае можно встретить первокласных специалистов по математическому анализу, дифференциальным уравнениям или теории вероятностей, которые никогда не слышали о “теории доказательств” или “языке первого порядка”, что нисколько не мешает им делать замечательные математические открытия...
При этом навряд ли найдётся среди них тот, кто не слышал о теореме Гёделя о неполноте, o континуум гипотезе и т.д.
Логика -- это точно не аналог грамматики.

 
 
 
 Re: Что такое философия
Сообщение27.01.2021, 00:35 
Аватара пользователя
peg59
А где в вашей цитате приписанное вами Вавилову утверждение, что он жалеет о потраченном на нее времени?

И какое отношение к тому является ли логика частью математики является то, что большинство математиков не знакомы с ее основами (не разбираясь даже правда это или нет и что понимать под "основами") и то, способна ли логика обосновать математику? Вот, например, большинство математиков, наверное, не знает алгебраическую геометрию (можно подставить и некоторые другие разделы) и она не способна "обосновать математику". Значит она тоже не является частью математики?

peg59 в сообщении #1502899 писал(а):
Речь идет не об определениях, а о предмете изучения.

Не вижу большой разницы. Про любую науку можно сказать "это то, предметом чего является..."
Можно, конечно, подискутировать на тему того, что у наук бывает как "предмет изучения", так и "методы изучения", и что у некоторых наук предмет может совпадать, а методы отличаться, но в случае математики ее методы являются также и предметом ее изучения, поскольку они появляются именно в ней, а не откуда-то извне, и могут изучаться самостоятельно.

 
 
 
 Re: Что такое философия
Сообщение27.01.2021, 07:46 
Аватара пользователя
Математиков не должно заботить, что такое философия вообще, это не их ума дело. Их должна заботить философия математики. Правда, они частенько стесняются и говорят про "метаматематику", но это эвфемизм.

 
 
 
 Re: Что такое философия
Сообщение27.01.2021, 08:06 
Аватара пользователя
Odysseus в сообщении #1502904 писал(а):
А где в вашей цитате приписанное вами Вавилову утверждение, что он жалеет о потраченном на нее времени?

Книжка большая, сходу не нашел. Но могу, если это прям так важно.

-- 27.01.2021, 08:10 --

Odysseus в сообщении #1502904 писал(а):
Про любую науку можно сказать "это то, предметом чего является..."

Ну так скажите что-нибудь содержательное о философии.
Мне из параллельных дискуссий становится ясно, что все, что было содержательным в философии, впоследствии оформилось в отдельные науки. Похоже, современным философам ничего не осталось, кроме общих фраз. Ах, да! Бога забыл.

-- 27.01.2021, 08:22 --

Ну вот еще из Вавилова:

... я считаю, что бо́льшая часть математической логики абсолют-
но иррелевантна при изучении математики. Вопросы, которые интересуют нас
в этой книге, это конкретные вопросы, в ответе на которые используемые пра-
вила вывода не могут играть вообще никакой роли, а используемые аксиомы
теории множеств — почти никакой. Никакая — никакая!!! — ревизия ‘осно-
ваний’, правил вывода и туманных аксиом логики и теории множеств не в
состоянии отменить сияющие факты, такие как, скажем, то, что существует
ровно 17 групп симметрии плоскости или ровно 6 правильных многогранников
в четырехмерном пространстве. А именно факты такого рода, их объясне-
ния, истолкования, следствия и взаимосвязи составляют основное содержание
математики.

К сожалению, сам я был лишен возможности избежать изучения математической логи-
ки, хотя бы потому, что реформа ВАК 1977 года влила специальность 01.01.03 — алгебра и
теория чисел в специальность 01.01.06 — математическая логика и основания математики
??, в результате чего образовалась новая специальность 01.01.06 — математическая логика,
алгебра и теория чисел. Одним из побочных результатов этого была тотальная пересдача
всеми аспирантами первой части кандидатского экзамена, с включением в нее вопросов по
математической логике, в том числе, конечно, и доказательства теорем Геделя. В настоящее
время в официальной программе первой части экзамена по специальности 01.01.06 вообще
не осталось никакого контента, ничего, кроме логики.

 
 
 
 Re: Что такое философия
Сообщение27.01.2021, 12:06 
Аватара пользователя
Mihr в сообщении #1502882 писал(а):
peg59, предмет математики определить совсем не так легко, как может показаться на первый взгляд.

Да ладно, напали на человека. :-) Конечно, дать точное и адекватное определение чему бы то ни было не так уж легко. Но речь-то явно не об этом, а о том, что в случае с математикой более или менее понятно, что можно отнести к математическим знаниям и преподавать на соответствующих курсах, а в случае с философией - куда ни ткни, возникают сильные сомнения в том, а нужно ли кому-то (кроме, разве что, историков) преподавать такое "знание". Как пример - те же пресловутые "законы диалектики".

Если уж говорить об "определениях", то я бы выразился так, что предметом математики являются формализованные абстрактные понятия. То, что они достаточно абстрактные, гарантирует, что они не принадлежат исключительно к какой-то другой дисциплине, например, к физике или экономике. Казалось бы, по аналогии напрашивается "определение" для философии - что её предметом являются неформализованные абстрактные понятия. Но проблема в том, что 99% циркулирующих в социуме неформализованных абстрактных понятий являются просто бессмыслицей, что непосредственно выясняется при первой же попытке их формализации. А оставшиеся 1% понятий, которые удаётся успешно формализовать, тут же переезжают в математику.

-- Ср янв 27, 2021 13:17:20 --

Dan B-Yallay в сообщении #1502902 писал(а):
Логика -- это точно не аналог грамматики.

А что? Аналогия хорошая. Тем более, что формальная грамматика - часть логики. Причём остальное - аксиоматика и правила вывода - по своему смыслу тоже от этого далеко не ушло.

-- Ср янв 27, 2021 13:29:22 --

peg59 в сообщении #1502875 писал(а):
Я так понимаю, философия должна давать методологию познания.
Но не дает.
А наука - дает.

Кстати, интересный вопрос. В частности потому, что как только на горизонте появляется "официально принятая" философия, так тут же у неё возникают претензии на то, чтобы предоставлять "правильную" методологию познания. И ничем хорошим для науки это не заканчивается.

Я полагаю, что это потому, что реальная методология познания - продукт реальной культуры. То бишь, если культура признаёт ценность практических знаний, то научная среда, в которой конкурентные преимущества получают полезные научные теории, складывается "сама собой", без всяких внешних по отношению к науке "теоретических обоснований". А если культура нацелена на другие ценности, то ничто не спасёт процесс познания от деградации.

 
 
 
 Re: Что такое философия
Сообщение28.01.2021, 07:42 
epros в сообщении #1502942 писал(а):
предметом математики являются формализованные абстрактные понятия... Казалось бы, по аналогии напрашивается "определение" для философии - что её предметом являются неформализованные абстрактные понятия.
кто такие формализованные понятия, что такое формализация?
числа это не (графические) цифры, хотя без цифр сколь-нибудь точные вычисления практически немыслимы; формулы даже мат. анализа и дифференциальной геометрии не есть те абстрактные понятия, что составляют содержание этих разделов математики.

Роман «Общая топология» Келли (без каких бы то ни было формул вообще!) и статьи по теории множеств, где специализированных формул очень мало, указывают на сущность мат. понятий: те должны быть достаточно точными и однозначными, чтобы ими можно было с пользой оперировать и манипулировать, (графические) символы и формулы лишь способствуют практически таким операциям; даже теорема Гёделя о неполноте в принципе не нуждается в знаковом формализме, потому что всегда будет содержательных арифметических утверждений остающихся недоказуемыми за пределами любой аксиоматики.

 
 
 [ Сообщений: 1063 ]  На страницу Пред.  1 ... 15, 16, 17, 18, 19, 20, 21 ... 71  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group