2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Графики для четырёх переменных
Сообщение29.05.2020, 12:59 
Здравствуйте. Подскажите, в какой программе мне можно построить следующие 4 графика, чтобы они отображались все на одном рисунке, хочу их сравнить:
1. $f_1 = f(x_1,x_2) = \frac{x_1}{x_1+x_2}$
2. $f_2 = f(x_1,x_3) = \frac{x_1}{x_1+x_3}$
3. $f_3 = f(x_2,x_4) = \frac{x_4}{x_2+x_4}$
4. $f_4 = f(x_3,x_4) = \frac{x_4}{x_3+x_4}$
Дополнительные условия:
1. $x_1,x_2,x_3,x_4 \in [0;100]$
2. $x_1 + x_3 = 100$
3. $x_2 + x_4 = 100$
Понимаю, что речь идёт от 5-мерном пространстве, но может есть какие-то ухищрения или упрощения?
Смысл такой: я хочу проследить, как эти 4 функции зависят дуг от друга при плавном изменении каждой переменной поочерёдно от 0 до 100 (так как переменные попарно связаны, при этом будет меняться и парная изменяемой переменная, а другие две парные переменные будут иметь какое-то фиксированное значение).
Что можете подсказать в этой ситуации?

-- 29.05.2020, 13:05 --

Если кому интересно, речь идёт о чувствительности ($f_1$), прогностичности положительного результата ($f_2$), специфичности ($f_3$) и прогностичности отрицательного результата ($f_4$).
https://medspecial.ru/wiki/%D0%A7%D1%83 ... %82%D1%8C/

 
 
 
 Re: Графики для четырёх переменных
Сообщение29.05.2020, 13:18 
Solaris86 в сообщении #1465762 писал(а):
Что можете подсказать в этой ситуации?
Из дополнительных условий следует, что переменных две, а не четыре.
Ну и
2. $f_2 = f(x_1,x_3) = \frac{x_1}{x_1+x_3}=f(x_1)=0,01 \cdot x_1$
3. $f_3 = f(x_2,x_4) = \frac{x_4}{x_2+x_4}=f(x_4)=0,01 \cdot x_4$

 
 
 
 Re: Графики для четырёх переменных
Сообщение29.05.2020, 13:50 
wrest в сообщении #1465765 писал(а):
2. $f_2 = f(x_1,x_3) = \frac{x_1}{x_1+x_3}=f(x_1)=0,01 \cdot x_1$
3. $f_3 = f(x_2,x_4) = \frac{x_4}{x_2+x_4}=f(x_4)=0,01 \cdot x_4$

Почему-то эти замены работают только для некоторых значений переменных и функций.
Вот таблица некоторых значений:
Изображение
$f_2=1 = 0.01\cdot100 = 1$
$f_2= 0.91 \not= 0.01\cdot100 = 1$

 
 
 
 Re: Графики для четырёх переменных
Сообщение29.05.2020, 13:53 
Так чего ж вы говорите, что $f_2=\dfrac{x_1}{x_1+x_3}$...

 
 
 
 Re: Графики для четырёх переменных
Сообщение29.05.2020, 13:56 
Solaris86 в сообщении #1465773 писал(а):
Почему-то эти замены работаю только для некоторых значений переменных и функций.
Ищите ошибку у себя, или в формулах для функций или в дополнительных условиях или в вашей таблице.

 
 
 
 Re: Графики для четырёх переменных
Сообщение29.05.2020, 13:59 
kotenok gav в сообщении #1465774 писал(а):
Так чего ж вы говорите, что $f_2=\dfrac{x_1}{x_1+x_3}$...

Да, ошибся, так верно:
1. $f_1 = f(x_1,x_3) = \frac{x_1}{x_1+x_3}$
2. $f_2 = f(x_1,x_2) = \frac{x_1}{x_1+x_2}$
3. $f_3 = f(x_2,x_4) = \frac{x_4}{x_2+x_4}$
4. $f_4 = f(x_3,x_4) = \frac{x_4}{x_3+x_4}$

-- 29.05.2020, 14:06 --

wrest в сообщении #1465775 писал(а):
Ищите ошибку у себя, или в формулах для функций или в дополнительных условиях или в вашей таблице.

Там нет ошибок.

 
 
 
 Re: Графики для четырёх переменных
Сообщение29.05.2020, 14:16 
wrest в сообщении #1465775 писал(а):
Ищите ошибку у себя,
Solaris86 в сообщении #1465776 писал(а):
Там нет ошибок.
Ну ок, я пас тогда.

 
 
 
 Re: Графики для четырёх переменных
Сообщение29.05.2020, 14:29 
1. $x_1,x_2,x_3,x_4 \in [0;100]$
2. $x_1 + x_3 = 100$
3. $x_2 + x_4 = 100$
Поясню условия. У нас есть 200 человек: 100 больные, 100 здоровые. Всем этим 200 людям проводят тест.
Число истинно положительных результатов - $x_1$, это выявленные тестом больные люди.
Число ложно положительных результатов - $x_2$, это не выявленные тестом здоровые люди.
Число ложно отрицательных результатов - $x_3$, это не выявленные тестом больные люди.
Число истинно отрицательных результатов - $x_4$, это выявленные тестом здоровые люди.
Так как по условию общее число больных всего 100, а сюда входят как выявленные тестом больные $x_1$, так и не выявленные тестом больные $x_3$, то $x_1 + x_3 = 100$, а также число выявленных тестом больных $x_1$ может быть от 0 до 100 и число не выявленных тестом больных $x_3$ также может быть от 0 до 100.
Так как по условию общее число здоровых всего 100, а сюда входят как не выявленные тестом здоровые $x_2$, так и выявленные тестом здоровые $x_4$, то $x_2 + x_4 = 100$, а также число не выявленных тестом здоровых $x_2$ может быть от 0 до 100 и число выявленных тестом здоровых $x_4$ также может быть от 0 до 100.
Формулы для функций верны.

 
 
 
 Re: Графики для четырёх переменных
Сообщение29.05.2020, 14:42 
Solaris86
Ну, выразите все Ваши функции через какую-нибудь пару переменных (например, через $x_1$ и $x_2$) и нарисуйте 4 обычных поверхности (plot3d в Maple). Наверное, это можно сделать и в одной картинке.

 
 
 
 Re: Графики для четырёх переменных
Сообщение29.05.2020, 15:05 
wrest в сообщении #1465780 писал(а):
wrest в сообщении #1465775

писал(а):
Ищите ошибку у себя, Solaris86 в сообщении #1465776

писал(а):
Там нет ошибок. Ну ок, я пас тогда.

Прошу прощения, из-за ошибок в формулах и путаницы столбцов так и получилось, что не для всех значений работало. Сейчас всё проверил, обе подстановки работают.

 
 
 
 Re: Графики для четырёх переменных
Сообщение29.05.2020, 16:38 
Всё-таки, наверное, сформулирую вопрос пока по-другому.
Есть такой набор условий:
1. $f_1 = f(x_1,x_3) = \frac{x_1}{x_1+x_3}$
2. $f_2 = f(x_1,x_2) = \frac{x_1}{x_1+x_2}$
3. $f_3 = f(x_2,x_4) = \frac{x_4}{x_2+x_4}$
4. $f_4 = f(x_3,x_4) = \frac{x_4}{x_3+x_4}$
5. $x_1,x_2,x_3,x_4 \geq 0$, но конечны.
Вот есть 2 конкретных случая:
Случай А. Известны значения функций $f_1 = 0.82$ и $f_3 = 0.9$. Нужно найти значения функций $f_2$ и $f_4$.
Случай Б. Известны значения функций $f_2 = 1$ и $f_4 = 0.95$. Нужно найти значения функций $f_1$ и $f_3$.
В обоих случаях значения переменных $x_1$, $x_2$, $x_3$, $x_4$ и суммы значений попарных переменных $x_1+x_3$ и $x_2 +x_4$ неизвестны.
Вопрос: это решаемые задачи или не хватает данных для их решения?

 
 
 
 Re: Графики для четырёх переменных
Сообщение29.05.2020, 17:13 
Нет, не решаемые.

 
 
 
 Re: Графики для четырёх переменных
Сообщение29.05.2020, 17:21 
Solaris86 в сообщении #1465814 писал(а):
Вопрос: это решаемые задачи или не хватает данных для их решения?

A) Не хватает.
Б) $f_3=1$

 
 
 
 Re: Графики для четырёх переменных
Сообщение29.05.2020, 17:30 
Проще, ИМХО, будет выразить эти функции через $\dfrac{x_1}{x_2}$ и так далее.

 
 
 
 Re: Графики для четырёх переменных
Сообщение29.05.2020, 20:31 
kotenok gav в сообщении #1465819 писал(а):
Проще, ИМХО, будет выразить эти функции через $\dfrac{x_1}{x_2}$ и так далее.

1. $f_1 = \frac{x_1}{x_1+x_3} = \frac{1}{1 + \frac{x_3}{x_1}}$
2. $f_2 = \frac{x_1}{x_1+x_2} = \frac{1}{1 + \frac{x_2}{x_1}}$
3. $f_3 = \frac{x_4}{x_2+x_4} = \frac{1}{\frac{x_2}{x_4} + 1}$
4. $f_4 = \frac{x_4}{x_3+x_4} = \frac{1}{\frac{x_3}{x_4} + 1}$
А чем это может помочь?

 
 
 [ Сообщений: 27 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group