2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 Еще одно доказательство теоремы Брауэра
Сообщение11.06.2019, 09:02 
В теме https://dxdy.ru/topic24161.html (почти ровно 10 лет назад :P ) участник terminator-II приводил доказательство теоремы Брауэра, использующее дифференциальные формы. Я недавно увидел еще одно подобное доказательство. По-моему, оно даже чуть попроще, хотя суть одна. Оно более конкретное как бы.

Итак, покажем, что не существует гладкого отображения $f\colon B\to \partial B$ замкнутого шара $ B\subset \mathbb R^n$, тождественного на границе.

Предположим противное, пусть такое отображение $f=(f^1,\ldots,f^n)$ нашлось.

Пусть $\omega=x^1 dx^2\wedge\ldots\wedge dx^n$, $\tilde\omega=f^1df^2\wedge\ldots\wedge df^n$. Так как $f^i\mid_{\partial B}=x^i$ для всех $i=1,\ldots, n$, то $\tilde\omega\mid_{\partial B}=\omega\mid_{\partial B}$. Или по-научному, если $p\colon \partial B\to B$ - вложение, то сужение $$\tilde\omega\mid_{\partial B}=p^\ast\tilde\omega=p^\ast(f^1df^2\wedge\ldots\wedge df^n)=p^*(f^1)\wedge d p^*(f^2)\wedge \ldots\wedge d p^*(f^n)=x^1 dx^2\wedge\ldots\wedge dx^n$$
Значит,
$$
\int\limits_{\partial B} x^1 dx^2\wedge \ldots\wedge dx^n=\int\limits_{\partial B} f^1 df^2\wedge \ldots\wedge df^n
$$

Теперь применяем формулу Стокса к обоим интегралам. Слева получится $\int_B dx^1\wedge\ldots\wedge dx^n=\mathop{\mathrm{vol}} B\neq 0$, а справа -- $\int_B df^1\wedge\ldots\wedge df^n=0$, так как $df^1\wedge\ldots\wedge df^n\equiv 0$ в $B$, поскольку якобиан отображения $f$ равен нулю (отображение $B$ в $\partial B$). Противоречие.

 
 
 
 Re: Еще одно доказательство теоремы Брауэра
Сообщение11.06.2019, 09:13 
Аватара пользователя

(А нет ли..)

А нет ли доказательства теоремы Брауэра, которое бы укладывалось в схему:
$f(\lambda x.f(xx) \lambda x.f(xx)) = \lambda x.f(xx) \lambda x.f(xx)$
Извиняюсь за оффтоп

 
 
 
 Re: Еще одно доказательство теоремы Брауэра
Сообщение11.06.2019, 15:07 
Аватара пользователя
Скажите пожалуйста, что обозначает звёздочка и $p^\ast.$ (И то же самое ли это, что в прошлой теме $p_\ast$? А то уважаемый terminator-II с 2010 года не пишет на форуме...) А то у меня чтение оба раза "ломается" ровно на этом обозначении.

-- 11.06.2019 15:12:50 --

Но это доказательство я смог дочитать до конца, "проскочив" непонятное место. И понять. Ну, это "не настоящая" теорема Брауэра, вроде бы, а её гладкая версия.

 
 
 
 Re: Еще одно доказательство теоремы Брауэра
Сообщение11.06.2019, 15:58 
Munin
Да, это то же, что и в теме terminator-II. Это операция переноса форм, по-английски pullback вроде называется. Если точка $x$ отображается в точку $p(x)$, то любая $k$-форма (вообще, любая функция) $\omega$ на касательном пространстве $T_{p(x)}$ переводится в форму $p^\ast\omega$ на $T_x$ по правилу $$p^\ast\omega(\xi_1,\ldots,\xi_k)=\omega(p'(x)\xi_1,\ldots,p'(x)\xi_k)$$ для любых $\xi_1,\ldots,\xi_k\in T_x$. В алгебре это называют сопряженным оператором.

-- Вт июн 11, 2019 17:00:46 --

Munin в сообщении #1398786 писал(а):
Ну, это "не настоящая" теорема Брауэра, вроде бы, а её гладкая версия

Да, конечно, надо сказать слова про аппроксимацию непрерывного отображения гладким. В той теме это было.

 
 
 
 Re: Еще одно доказательство теоремы Брауэра
Сообщение11.06.2019, 16:03 
Аватара пользователя
Вот-вот, этот pullback я раз тридцать пытался разобрать по википедии, и неудачно. В каком учебнике про него прочитать?

-- 11.06.2019 16:28:29 --

В частности, каковы правила взаимодействия pullback-а с внешним произведением и с дифференциалом?

 
 
 
 Re: Еще одно доказательство теоремы Брауэра
Сообщение11.06.2019, 17:03 
Они перестановочны. Пулбэк от внешнего произведения есть внешнее произведение пулбэков, пулбэк от внешнего дифференциала есть внешний дифференциал пулбэка. Первое утверждение чисто алгебраическое, второе проверяется вычислением в координатах. (Хотя, наверное, можно и бескоодинатно. В Картан Дифференциальное исчисление можно глянуть. Там все в бескоординатной форме в нормированных пространствах)

-- Вт июн 11, 2019 18:03:46 --

Munin в сообщении #1398796 писал(а):
В каком учебнике про него прочитать?

Ну, например, Дубровин Новиков Фоменко Современная геометрия

 
 
 
 Re: Еще одно доказательство теоремы Брауэра
Сообщение11.06.2019, 18:50 
Аватара пользователя
Это трёхтомник. Можно ткнуть пальцем конкретнее? :-)

-- 11.06.2019 19:16:57 --

Двух Картанов, оказывается, не надо путать. Отец Эли, сын Анри.

-- 11.06.2019 19:20:36 --

А зачем у этого pullback-а такая странная нотация? Если записать $\omega\circ p,$ то получится обычная запись композиции, не "задом наперёд".

 
 
 
 Re: Еще одно доказательство теоремы Брауэра
Сообщение11.06.2019, 19:59 
А. Картан Дифференциальное исчисление. Дифференциальные формы. Посмотрите страницу 216 (2.8. Замена переменных в дифференциальных формах) и её окрестности. Очень мне нравится бескоординатное изложение дифф. форм у Картана. Прямо эстетическое наслаждение.
В Дубровине, Новикове, Фоменко Том 1, Глава 3 $\S$ 22 Поведение тензоров при отображениях

-- Вт июн 11, 2019 21:01:12 --

Munin в сообщении #1398820 писал(а):
Если записать $\omega\circ p,$ то получится обычная запись композиции

Если $\omega$ - 0-форма, т.е. скалярная функция, то так оно и есть.

-- Вт июн 11, 2019 21:05:59 --

Вот смотрите, есть линейный оператор $A\colon X\to Y$ между векторными пространствами. Сопряженный оператор $A^\ast\colon Y^\ast\to X^\ast$ продолжается до отображения ковариантных тензоров (т.к. они есть тензорное произведение линейных функционалов). Пуллбэк делает то же самое в каждой точке $x$ нашего многообразия. При этом $X=T_x$, $Y=T_{p(x)}$, $A=p'(x)$.

 
 
 
 Re: Еще одно доказательство теоремы Брауэра
Сообщение11.06.2019, 20:25 
Аватара пользователя
Ага, спасибо за уточнённые ссылки!

Padawan в сообщении #1398830 писал(а):
Если $\omega$ - 0-форма, т.е. скалярная функция, то так оно и есть.

Да вроде, и для любой $k$-формы так и есть? Ведь $k$-форма - это просто функция на исходном многообразии (на внешней степени касательного расслоения, но это мелочи). В общем, непонятно, зачем делать обозначение, ломающее интуицию?

 
 
 
 Re: Еще одно доказательство теоремы Брауэра
Сообщение11.06.2019, 20:37 
Потому что формально композиция $\omega\circ p$ не определена. Ну, конечно, если мы напишем $\omega\circ P$, подразумевая под $P$ продолжение $p$ на касательное расслоение $TM$, и даже на все тензорное расслоение $T^{\infty,\infty} M$ (думаю, понятно. Не знаю, как правильно написать), то да, можно так обозначить.

 
 
 
 Re: Еще одно доказательство теоремы Брауэра
Сообщение11.06.2019, 23:17 
Аватара пользователя
В общем, ясно, что нужно какое-то новое обозначение. Но его можно было сделать "похожим на композицию", и это было бы наглядно. А тут сделано ровно наоборот, и я хочу понять, какие мотивы были у этого?

Впрочем, у Картана есть вариант ответа: $\varphi^\ast\omega=\varphi^\ast(\omega).$ Это меня несколько примиряет, хотя и не полностью.

-- 11.06.2019 23:23:22 --

Собственно, я разобрался достаточно, чтобы прочитать оба доказательства. Спасибо!

-- 11.06.2019 23:53:06 --

Пометка для себя: ещё pullback сохраняет ранг формы.

-- 11.06.2019 23:57:29 --

И вообще, Картан замечательный.

 
 
 
 Re: Еще одно доказательство теоремы Брауэра
Сообщение12.06.2019, 00:11 
Аватара пользователя
Munin в сообщении #1398861 писал(а):
какие мотивы были у этого?

Мотивы функториальные :-)
В математике часто встречается, что объектам одного типа (=одной категории) сопоставляются объекты другого типа (=другой категории). Например, топологическому пространству сопоставляется кольцо непрерывных функций на нем или гладкому многообразию сопоставляется касательное расслоение (тоже гладкое многообразие). При этом также возникает естественное сопоставление между морфизмами (стрелками) в соответствующих категориях. Так всякому непрерывному отображению $f \colon X \to Y$ топологических пространств соответствует гомоморфизм колец $f^{*} \colon C(Y) \to C(X)$, где $f^{*}(\varphi):=\varphi \circ f$ для $\varphi \in C(Y)$, а всякому гладкому отображению $f \colon M \to N$ гладких многообразий соответствует отображение $f_{*} \colon TM \to TN$, которое, как Вы знаете, есть дифференциал. Ну и еще легко видеть, что относительно композиции морфизмов также все хорошо. Вот такое сопоставление между категориями называется функтором. В приведенных примерах видно, что в первом случае стрелке $X \to Y$ соответствовала стрелка "в другом направлении" $C(Y) \to C(X)$ (т. е. функции "едут" справа-налево). Такой функтор называется контравариантным. А во втором примере прямой стрелке соответствовала также прямая стрелка. Соответствующий функтор называется ковариантным. Отсюда и обозначения $f^{*}$ и $f_{*}$. Только стоит лишь помнить о путанице здесь возникающей: по этой терминологии функтор, сопоставляющий линейному пространству его сопряженное (т. е. пространству векторов пространство ковекторов), называется контравариантным. Ну и соответствующая несостыковка происходит со всеми двойственными объектами. Еще одним примером контравариантного функтора, который здесь обсуждается, является алгебра дифференциальных форм на гладком многообразии.

Еще примеры ковариантных функторов: топологическое пространство $\to$ фундаментальная группа (тут чуть аккуратней надо); измеримое пространство $\to$ пространство мер.

 
 
 
 Re: Еще одно доказательство теоремы Брауэра
Сообщение12.06.2019, 03:29 
Аватара пользователя
demolishka в сообщении #1398870 писал(а):
Так всякому непрерывному отображению $f \colon X \to Y$ топологических пространств соответствует гомоморфизм колец $f^{*} \colon C(Y) \to C(X)$, где $f^{*}(\varphi):=\varphi \circ f$ для $\varphi \in C(Y)$, а всякому гладкому отображению $f \colon M \to N$ гладких многообразий соответствует отображение $f_{*} \colon TM \to TN$, которое, как Вы знаете, есть дифференциал.

Вот тут уже легко запутаться, потому что в одном случае стрелочка разворачивается, а в другом - нет.

demolishka в сообщении #1398870 писал(а):
Еще одним примером контравариантного функтора, который здесь обсуждается, является алгебра дифференциальных форм на гладком многообразии.

А из чего он "бьёт"?

demolishka в сообщении #1398870 писал(а):
Еще примеры ковариантных функторов: топологическое пространство $\to$ фундаментальная группа (тут чуть аккуратней надо)

А в группы гомотопий, гомологий, когомологий?

 
 
 
 Re: Еще одно доказательство теоремы Брауэра
Сообщение12.06.2019, 05:32 
Аватара пользователя
Munin в сообщении #1398887 писал(а):
Вот тут уже легко запутаться

Вот, чтобы не путаться, придумали писать звездочки. На какой объект действует $f^{*}$ (например, на ковекторы, функции или дифференциальные формы) или $f_{*}$ (касательные векторы или меры) обычно ясно из контекста.

Munin в сообщении #1398887 писал(а):
А из чего он "бьёт"?

Гладкому многообразию $M$ сопоставляется алгебра дифференциальных форм $\Omega(M)$ на нем. Тогда каждому отображению $f \colon M \to N$ гладких многообразий соответствует гомоморфизм алгебр $f^{*} \colon \Omega(N) \to \Omega(M)$. Он называется pullback'ом ровно потому, что дифф. формы едут справа налево.

Munin в сообщении #1398887 писал(а):
гомотопий, гомологий, когомологий?

Это тоже примеры. Только функтор когомологий (я знаю только де Рамовские) контравариантный.

 
 
 
 Re: Еще одно доказательство теоремы Брауэра
Сообщение12.06.2019, 06:45 
Аватара пользователя
А, понятно! Звёздочка там, где в индексной нотации стоит "сворачивающий индекс". Правда, это не очень хорошо, потому что она ничего не сворачивает. Ну хоть что-то.

Спасибо за объяснения!

 
 
 [ Сообщений: 38 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group