А если взять картину мировых линий массивных тел в пространстве-времени, то будет ли она иметь однозначный смысл без заданных мировых линий лучей света? Или же глупо говорить о картине мировых линий массивных тел без мировых линий лучей света, т.к. лучи света - это неустранимая, встроенная в систему ее часть, а не просто условные координаты x-t?
Это, наверно, вопрос об изображении псевдоевклидова пространства с помощью евклидова. В евклидовом квадратичная форма положительно определена, и у такой формы нет каких-то особых «отметок» на пространстве, её гиперповерхности ненулевого уровня гомеоморфны сферам (соответствующей размерности). Псевдоевклидовы квадратичные формы хитрее (но тут мы ограничимся случаем, когда в сигнатуре один плюс, а не произвольное количество — это то, с чем имеют дело наши конкретные СТО и ОТО). Гиперповерхности ненулевого уровня здесь уже гомеоморфны гиперболоидам однополостным и двуполостным в зависимости от того, меньше или больше нуля выбранный уровень (ну, для двумерного пространства-времени они совпадают в гиперболе), и гиперповерхность нулевого уровня не состоит просто из одной точки, это, как вы уже знаете, конус.
Так вот когда мы изображаем такое пространство с квадратичной формой на некотором аффинном, лучший вариант — это отметить на нём поверхности уровня; это единственное изображение, другой набор поверхностей задаст однозначно другую форму.
Когда нам важно знать только знаки скалярных квадратов векторов, достаточно изобразить только поверхность нулевого уровня и маркировать, какая часть пространства «идёт с каким знаком»: для евклидова в итоге у нас будет нужда только отметить ноль — у всех остальных векторов квадрат положительный — а для псевдоевклидова тот самый нулевой конус
и всё-таки пометить, с какой стороны от него плюс, с какой минус.
Когда нам важно знать не только знаки, всё-таки придётся выделить как минимум поверхности уровня
. Или задать ортогональный базис, подписав значения квадратов векторов; или уж сразу ортонормированный и подписать только знаки — но множество разных таких ортонормированных базисов может задавать одну и ту же квадратичную форму. Ну и ещё можно заметить, что какой-то из ортонормированных базисов оказывается удобно представлять при рисовании ортонормированным же базисом евклидова пространства; но такое удаётся сделать только с одним базисом, а все остальные пролетят. Изображение же нулевого конуса всего одно и потому таких проблем не имеет — но, повторюсь, для рисунков, изображающих какие-то количественные соотношения, одного конуса недостаточно. В общем «неустранимая, встроенная в систему часть» — это собственно линейная структура и квадратичная форма в целом, ну или если считать линейную структуру очевидной, то форма, и визуально — набор её поверхностей уровня.
Таким образом можно восстановить и стертые координаты ньютоновского графика. Правда, восстанавливается только направление осей, но не их масштаб.
Нет, только направление «оси» времени. Вообще не очень хорошо говорить о каких-то осях, когда предполагается потом разбираться с ОТО: оси применимы только к аффинным системам координат (и декартовым как их частному случаю, когда есть квадратичная форма и мы к ней поближе подстраиваемся), и даже там от них мало толку, а координатные 1-формы куда нагляднее. Их опять удобно представлять набором гиперповерхностей уровня, в этом случае плоских, и в случае декартовой системы — ещё и «слабоортогональных» (таких
, что
, где
; в таком же смысле две плоскости перпендикулярны в школьной геометрии, хотя по-настоящему они ортогональны быть не могут, имея нетривиальное пересечение). Так что вместо оси времени получается 1-форма абсолютной временной координаты, плюс-минус константа. (До кучи, поверхности уровня этой формы — единственно возможные поверхности одновременности ньютоновской физики.)