2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2
 
 Re: СНАУ с огранмчениями
Сообщение20.05.2019, 19:11 
Аватара пользователя
feedinglight в сообщении #1394188 писал(а):
На $y^2$ хотя бы нельзя заменить? А то с экспонентой слишком жёстко может получиться.


Я бы не советовал. Монотонность теряется. Собственно, получается вариант изначального алгоритма, отрицательные значения в положительные.

 
 
 
 Re: СНАУ с огранмчениями
Сообщение20.05.2019, 19:26 
vpb в сообщении #1394227 писал(а):
и что получится ?

получится что $x$ будет стремится к 0 а значение 3/4 никогда не будет достигнуто. Т.е. останется большая невязка.
Значит перепараметризация просто не даёт решению выйти за границу, а проблема локальных минимумов остаётся.
Спасибо vpb за пояснение!
Хорошо хоть легко определить, что минимум локальный (большая невязка и $ x\to 0$), можно будет использовать для выхода случайный поиск

 
 
 
 Re: СНАУ с огранмчениями
Сообщение21.05.2019, 11:51 
Andrey_Kireew в сообщении #1394243 писал(а):
Я бы не советовал. Монотонность теряется


На всякий случай проверил с квадратом. Заметного выигрыша в производительности это не даёт. Характеристики сходимость, на мой взгляд, немного хуже. Но в целом - результаты получаются похожие.

 
 
 [ Сообщений: 18 ]  На страницу Пред.  1, 2


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group