Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия, Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
Как из этого следует, что в классе бесконечно дифференцируемых нет наилучшей?
Следует не из этого. Вы же знаете, чем супремум отличается от максимума? Так и здесь: какую бы Вы не взяли функцию, удовлетворяющую условию, можно будет найти чуть лучше -- которая ближе с учётом первой производной к прямой . Но в пределе будет именно эта прямая.
ellipse
Re: Бесконечно гладкое сопрягающая двух лучей
12.07.2018, 20:45
Последний раз редактировалось ellipse 12.07.2018, 20:45, всего редактировалось 1 раз.
Так и здесь: какую бы Вы не взяли функцию, удовлетворяющую условию, можно будет найти чуть лучше -- которая ближе с учётом первой производной к прямой .
Пока показано только то, что можно найти функцию чуть лучше в классе конечно дифференцируемых. Откуда следует, что можно найти чуть лучше в более узком классе бесконечно дифференцируемых?
slavav
Re: Бесконечно гладкое сопрягающая двух лучей
12.07.2018, 21:51
Оператор свёртки с бесконечно дифференцируемым ядром (ТС привёл такое ядро в первом сообщении) переводит любую непрерывную функцию в бесконечно дифференцируемую. Ядро должно быть финитным (отличным от нуля в конечной окрестности нуля) с единичным интегралом. Таких ядер можно построить последовательность уменьшая окрестность, где ядро отлично от нуля. Для последовательности ядер строим последовательность функций. У них такие свойства: последовательность равномерно сходится к исходной функции, Если исходная функция где-то дифференцируема, по последовательность производных сходится к производной функции. Получается конструкция где лучшей функции нет - всегда можно предъявить функцию с меньшей производной. А минимум производной достигается на пределе, да только предел не гладкий. Как-то так.